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Preface

This book presents research performed as part of the EU project on biomimetic
multimodal learning in a mirror neuron-based robot (MirrorBot) and contribu-
tions presented at the International AI-Workshop on NeuroBotics. The over-
all aim of the book is to present a broad spectrum of current research into
biomimetic neural learning for intelligent autonomous robots. There is a need
for a new type of robot which is inspired by nature and so performs in a more
flexible learned manner than current robots. This new type of robot is driven by
recent new theories and experiments in neuroscience indicating that a biological
and neuroscience-oriented approach could lead to new life-like robotic systems.

The book focuses on some of the research progress made in the MirrorBot
project which uses concepts from mirror neurons as a basis for the integration
of vision, language and action. In this book we show the development of new
techniques using cell assemblies, associative neural networks, and Hebbian-type
learning in order to associate vision, language and motor concepts. We have
developed biomimetic multimodal learning and language instruction in a robot
to investigate the task of searching for objects. As well as the research performed
in this area for the MirrorBot project, the second part of this book incorporates
significant contributions from other research in the field of biomimetic robotics.
This second part of the book concentrates on the progress made in neuroscience
inspired robotic learning approaches (in short: NeuroBotics).

We hope that this book stimulates and encourages new research in this in-
teresting and dynamic area. We would like to thank all contributors to this
book, all the researchers and administrative staff within the MirrorBot project,
the reviewers of the chapters and all the participants at the AI-Workshop on
NeuroBotics.

Finally, we would like to thank the EU for their support of the MirrorBot
project, and Alfred Hofmann and his staff at Springer for their continuing sup-
port.

May 2005 Stefan Wermter
Günther Palm
Mark Elshaw
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Abstract. We present a brief overview of the chapters in this book
that relate to the development of intelligent robotic systems that are in-
spired by neuroscience concepts. Firstly, we concentrate on the research
of the MirrorBot project which focuses on biomimetic multimodal learn-
ing in a mirror neuron-based robot. This project has made significant
developments in biologically inspired neural models using inspiration
from the mirror neuron system and modular cerebral cortex organisa-
tion of actions for use in an intelligent robot within an extended ‘pick
and place’ type scenario. The hypothesis under investigation in the Mir-
rorBot project is whether a mirror neuron-based cell assembly model
can produce a life-like perception system for actions. Various models
were developed based on principles such as cell assemblies, associative
neural networks, and Hebbian-type learning in order to associate vision,
language and motor concepts. Furthermore, we introduce the chapters
of this book from other researchers who attended our AI-workshop on
NeuroBotics.

1 Introduction

Many classical robot systems ignore biological inspiration and so do not per-
form in a robust learned manner. This is reflected in most of the conventional
approaches to the programming of (semi-) autonomous robots: Many details of
the program have to be reprogrammed and fine-tuned by hand even for slight
changes in the application, which is time consuming and error-prone. Hence,
there is a need for a new type of computation that is able to take its inspira-
tion from neuroscience and perform in an intelligent adaptive manner to create
biomimetic robotic systems. Many researchers including the contributors to this
book hold that by taking inspiration from biological systems that would allow
the development of autonomous robots with more robust functionality than is
possible with current robots. An additional benefit of biomimetic robots is that

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 1–18, 2005.
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they can provide an indication of how the biological systems actually could work
in order to provide feedback to neuroscientists. In order to indicate the progress
made towards Biomimetic Neural Learning for Intelligent Robots this book is
split into two parts.

In the first part we present some of the research findings from the biomimetic
multimodal learning in a mirror neuron-based robot (MirrorBot) project. The
aim of this EU FET project was to develop models for biomimetic multimodal
learning using a mirror neuron-based robot to investigate an extended ‘pick and
place’ scenario. This task involves the search for objects and integrates multi-
modal sensory inputs to plan and guide behaviour. These perceptual processes
are examined using models of cortical assemblies and mirror neurons to explore
the emergence of semantic representations of actions, percepts, language and
concepts in a MirrorBot, a biologically-inspired neural robot. The hypothesis
under investigation and focus of this book is whether a mirror neuron-based
cell assembly model will produce a life-like perception system for actions. The
MirrorBot project combines leading researchers in the areas of neuroscience and
computational modeling from the University of Sunderland, Parma and Ulm,
INRIA Lorraine/LORIA-CNRS and Cognition and Brain Sciences Unit, Cam-
bridge. The findings of the neuroscience partners form the basis of the compu-
tational models that are used in the development of the robotic system. The
neuroscience partners concentrate on two cerebral cortex systems by examin-
ing how humans process and represent different word categories and the mirror
neuron system.

The extended ‘pick and place’ scenario involves the MirrorBot neural robot
assistant being positioned between two tables that have multiple objects posi-
tioned on them and is required to perform various behaviours on objects based
on a human verbal instruction. The robot takes in three or four word instruc-
tions that contain an actor, action and object such as ‘bot pick plum’ or ‘bot
show brown nut’. The instructional grammar developed for the MirrorBot con-
tains approximately 50 words with the actor being the ‘bot’. The actions that
are performed are divided into those that are performed by the hand, leg or
head. For instance, the action performed by the hand include ‘pick’, ‘put’ and
‘lift’, the leg actions include ‘go’ and ‘move’ and the head actions include ‘show’
and ‘turn-head’. The objects include natural objects such as ‘orange’, ‘nut’ and
artefact objects such as ‘ball’ and ‘cup’. In order to perform the appropriate
behaviours the robot assistant using neural learning must perform such diverse
activities as language recognition, object localization, object recognition, atten-
tion, grasping actions, docking, table localization, navigation, wandering and
camera positioning.

In the second part of the book we provide chapters from researchers in
the field of biomimetic robotic neural learning systems who attended the AI-
Workshop on NeuroBotics. The aim of this workshop and hence of this book
is to contribute to robotic systems which use methods of learning or artificial
neural networks and/or are inspired by observations and results in neuroscience
and animal behaviour. These chapters were selected to give an indication of the
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diversity of the research that is being performed into biomimetic robotic learning
and to provide a broader perspective on neural robotics. For instance, chapters
will consider the development of a virtual platform for modeling biomimetic
robots, a robotic arm, robot recognition in RoboCup, sensory motor control of
robot limbs and navigation. These models are utilised by both robot simulators
and actual robots and make use of neural approaches that are both supervised
and unsupervised.

2 Modular Cerebral Cortex Organisation of Actions:
Neurocognitive Evidence for the MirrorBot Project

Neuroscience evidence reflected in the development of the MirrorBot biomimetic
robotic systems comes from research at Cambridge related to how words are
processed and represented in the cerebral cortex based on neurocognitive ex-
periments of Pulvermüller. Accordingly, words are represented and processed
using Hebbian learning, synfire chains and by use of semantic features. Heb-
bian learning supports the basis of higher cognitive behaviour through a simple
synaptic approach based on cell assemblies for cortical processing [27, 30, 28, 29].
Cell assemblies rely on a connectivity structure between neurons that support
one another’s firing and hence have a greater probability of being co-activated in
a reliable fashion [43, 41, 47, 23]. Synfire chains are formed from the spatiotem-
poral firing patterns of different associated cell assemblies and rely on the acti-
vation of one or more cell assemblies to activate the next assembly in the chain
[27, 41, 18]. Hence, neurocognitive evidence on word representation and process-
ing in the cerebral cortex suggests that cognitive representations are distributed
among cortical neuronal populations [29, 33, 27]. The word meaning is critical
for determining the cortical populations that are activated for the cognitive rep-
resentation task.

When looking at the web of cell assemblies which process and represent par-
ticular word types Pulvermüller [27] notes that activation is found in both hemi-
spheres of the cerebral cortex for content words. Semantic word categories elicit
different activity patterns in the fronto-central areas of the cortex, in the areas
where body actions are known to be processed [40, 11]. Perception words are
represented by assemblies in the perisylvian cortex and posterior cortex [27, 31]
and nouns related to animals activate the inferior temporal or occipital cortices
[28, 27, 29].

Emotional words are felt to activate the amygdala and cells in the limbic sys-
tem more than words associated with tools and their manipulation [26]. The link
between the assemblies in these two regions is achieved through the amygdala
and frontal septum [27]. For action words that involve moving ones own body
the perisylvian cell assembly is also associated with assemblies in the motor, pre-
motor and prefrontal cortices [27, 30]. For content words the semantic features
that influence the cell assemblies come from various modalities and include the
complexity of activity performed, facial expression or sound, the type and num-
ber of muscles involved, the colour of the stimulus, the object complexity and
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movement involved, the tool used, and whether the person can see itself doing
this activity. The combination of these characteristics into a single depiction is
produced by pathways linking sensory information from diverse modalities to the
same neurons. For objects the semantic features represented by cell assemblies
typically relate to their colour, smell and shape. If a word is repeatedly presented
with a stimulus the depiction of this stimulus is incorporated into the one for
the word to produce a new semantic feature. In general, words are depicted via
regions historically known as language regions and additional regions connected
with the words semantics.

Concerning a division between action related and non-action related words
[33], Pulvermüller states that there is a finer-grained grounding of language
instruction in actions. This produces a division of the representation in the
cerebral cortex based on the part of the body that performs that action between
leg, head and hand [11, 29, 30, 27, 12]. It is well known that there is a division
in the motor cortex between the regions that perform head/face, hand/arm
and leg actions [25]. For instance, the region of the motor cortex that controls
face movement is found in the inferior precentral gyrus, hand and arm in the
middle region of the precentral gyrus and the leg actions are located in the
dorsomedial area [29, 30]. Given the difference in the regions of the cortex that are
responsible for performing actions it is also stated by Pulvermüller that a similar
difference can be identified when representing action verbs and so grounding
language instructions in actions based on the part of the body that performs the
action [29].

Pulvermüller and his colleagues have performed various experiments [28, 12,
11, 13, 29, 40] on cerebral cortex processing of action verbs to test their hypoth-
esis on the representation of action verbs based on the body part that performs.
These include experiments where (i) different groups of subjects are given leg-,
arm- and face-related action verbs and pseudo-words and asked to state whether
they are a word; (ii) subjects are asked to use a rating system to answer ques-
tions on the cognitive processes a word arouses; (iii) subjects rank words based
on whether they are leg-, arm- or head-related; and (iv) there is a comparison
between hearing walk- and talk-type verbs. In these experiments EEG electrodes
are positioned at various points along the scalp to produce recordings of cere-
bral cortex activation. From these experiments areas are identified where the
activation is the same for all action verbs and more importantly are different
depending on the action verbs based on the body parts they relate to.

Differences between the three types of action verbs based on the body parts
were observed by Pulvermüller and his colleagues. They found a greater acti-
vation for face-words in the frontal-lateral regions of the left hemisphere close
to the premotor cortex associated with face and head. For face- and leg-related
action verbs there are different regions along the motor strip that are identified
to process verbs from these two verb categories. Leg-type words produce greater
activation in the cortical region of the cerebral cortex used to produce leg ac-
tions and for the face-words there is greater activation in the inferior regions
near to the face region of the motor cortex [32]. It is found that hand-related
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words are located in more lateral regions of the cortex than leg-words. Consistent
with the somatotopy of the motor and premotor cortex [25], leg-words elicited
greater activation in the central cerebral cortex region around the vertex, with
face-words activating the inferior-frontal areas, thereby suggesting that the rel-
evant body part representations are differentially activated when action words
are being comprehended.

In addition the average response time for lexical decisions is faster for face-
associated words than for arm-associated words, and the arm-associated words
are faster than leg ones. There is also greater activation in the right parieto-
occipital areas for arm- and leg-words relative to head words. The evidence of
these experiments points to the word semantics being represented in different
parts of the cerebral cortex in a systematic way. Particularly the representation
of the word is related to the actual motor and premotor regions of the cerebral
cortex that perform the action.

3 Mirror Neuron System Inspiration for MirrorBot
Project

Research at Parma has provided a great deal of evidence on the mirror neuron
system that inspired the robotic research for the MirrorBot project. Rizzolatti
and co-workers [35, 8] found that neurons located in the rostral region of a pri-
mate’s inferior frontal cortex area, the F5 area, are activated by the movement
of the hand, mouth or both. These neurons fire as a result of the action, but not
of the isolated movements that make up this action. The recognition of motor
actions comes from the presence of a goal and so the motor system does not
solely control movements [9, 37]. Hence, what turns a set of movement into an
action is the goal and holding the belief that performing the movements will
achieve a specific goal [1]. The F5 neurons are organised into diverse categories
based on the actions that cause them to fire, which are ‘grasping’, ‘holding’ and
‘tearing’ [34, 9].

Certain grasping-related neurons fire when grasping an object whether it be
performed by the hand, mouth or both [7]. This supports both the view that
these neurons do not represent the motor action but the actual goal of performing
the grasping task. Within area F5 there are two types of neuron: the first known
as canonical neurons only respond to the performing of the action and the second
mirror neurons that respond not only when performing an action but also when
seeing or hearing the action performed [17, 36, 34]. Hence, the mirror neuron
system produces a neural representation that is identical for the performance
and recognition of the action [1].

These mirror neurons are typically found in area F5c and do not fire in
response to the presence of the object or mimicking of the action. Mirror neurons
required the action to interact with the actual object. They respond not only
to the aim of the action but also how the action is carried out [44]. However, as
shown by Umilta et al. 2001 [44] an understanding of an invisible present object
causes the activation of the mirror neurons if the hand reaches for the object in
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the appropriate manner. This is achieved when they are first shown the action
being performed completely visible and then with the hand-object interaction
hidden. As the performance and recognition of an action causes activation in the
premotor areas which is responsible for the hand movements when observing the
action there is a set of mechanisms that prevent the behaviour being mimicked.
The mirror neuron system indicates that the motor cortex is not only involved
in the production of actions but in the action understanding from perceptual
information [36] and so the observer has the same internal representation of
action as the actor [44].

In this book Gallese [6] considers an exciting extension to findings related to
the mirror neuron system based on the system providing an understanding of the
emotional state of the performer for the observer. We do not exist independent
of the actions, emotions and sensations of others as we understand the intentions
of others. This indicates that as well as recognising an action the mirror neuron
system has a role in predicting the consequences of what is being performed.
Furthermore by allocating intentions to the actions monkeys and humans are
able to use the mirror neurons to aid social interactions. This is achieved through
the mirror neuron system providing intention to the motor sequence to identify
further goals from this sequence. Hence, Gallese [6] in this chapter notes that
we do not just see and recognise an action using the mirror neuron system but
by using this system we also associate emotions and sensations to this observed
behaviour. This occurs as if the observer is performing a similar action and
feeling the same feelings and sensations. This offers a form of mind reading by
the observed by attaching intentions to the behaviour. Hence, this points to the
ability through embodied simulation to gain insight into the minds of others.
Although this does not account for all social cognition.

It is observed that mirror neurons in humans are also excited by both the
performance and observation of an action [9]. The F5 area in primates corre-
sponds to various cortical areas in humans including the left superior temporal
sulcus, the left inferior parietal lobule and the anterior region of Broca’s area.
The association of mirror neurons with Broca’s area in humans and F5 in pri-
mates provides an indication that mirror neurons might have evolved in humans
into the language system [34]. The role of the mirror neuron system in language
can be seen from the findings of Pulvermüller [30, 11] in that processing and rep-
resentation of words includes the activation of some of the same regions as those
that are found to perform the action. The ability in the first instance to recognise
an action is required for the development of a communication system between
members of a group and finally for an elaborate language system [17, 34]. The
concept of the mirror neuron system being the foundation of the language system
directs the multimodal models developed as part of the MirrorBot project.

4 Computational Models in the MirrorBot Project

The neuroscience findings related to word processing and representation based
on the findings of research at Cambridge and the mirror neuron system from
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research at Parma formed the basis for various computational robotic models
in the MirrorBot project. In this book we incorporate chapters that provide
some of these models that are able to perform language sequence detection [16,
18], spatial visual attention [46, 4], auditory processing [22], navigation [3] and
language based multimodal input integration for robot control and multimodal
information fusion [18, 4, 20, 48, 24]. These models are a significant contribution
to the field of biomimetic neural learning for intelligent robots as they offer
brain-inspired robotic performance that is able to produce behaviour based on
the fusion of sensory data from multiple sources.

The research of Knoblauch and Pulvermüller [16] described in this book re-
lates to the use of a computational system to consider if word sequences are
grammatically correct and so perform sequence detection. A particularly im-
portant feature of language is its syntactic structure. For a robot to be able to
perform language processing in a biomimetic manner it should be able to distin-
guish between grammatically correct and incorrect word sequences, categorise
words into syntactic classes and produce rules. The model of Knoblauch and
Pulvermüller [16] incorporates a biologically realistic element in that it uses nu-
merous sequence detectors to show that associative Hebb-like learning is able to
identify word sequences, produces neural representations of grammatical struc-
tures, and links sequence detectors into neural assemblies that provides a biolog-
ical basis of syntactic rule knowledge. The approach consists of two populations
of neuron, the WW population for word webs and population SD for sequence
detectors. Each neuron is based on leaky-integrate units. The model was found
to create auto-associative substitution learning and generalized sequential or-
der to new examples and achieves the learning of putative neural correlate of
syntactical rules.

Vitay et al. [46] have developed a distributed model that allows to sequen-
tially focus salient targets on a real-world image. This computational model
relies on dynamical lateral-inhibition interactions within different neural maps
organized according to a biologically-inspired architecture. Despite the localized
computations, the global emergent behaviour mimics the serial mechanism of
attention-switching in the visual domain. Attention is understood here as the
ability to focus a given stimulus despite noise and distractors, what is repre-
sented here by a localized group of activated neurons. The task is to sequentially
move this bubble of activity on the different salient targets in the image. They
use a preprocessed representation of the image according to task requirements:
objects potentially interesting are made artificially salient by enhancing their
visual representation. Three mechanisms are involved to achieve that task: first
a mechanism allowing to focus a given stimulus despite noise and competing
stimuli; second a switching mechanism that can inhibit at demand the currently
focused target to let the first mechanism focus another location; third a working
memory system that remembers previously focused locations to avoid coming
back to a previously inspected object. The cooperation between these different
mechanisms is not sequential but totally dynamic and distributed: no need for a
central executive that would control the timing between the functionally differ-
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ent systems, the inner dynamics of the neurons make the work. This model has
been successfully implemented on a robotic platform.

The chapter by Murray et al. [22] offers a biomimetically inspired hybrid ar-
chitecture that uses cross-correlation and recurrent neural networks for acoustic
tracking in robots. This research is motivated by gaining an understanding of
how the mammalian auditory system tracks sound sources and how to model the
mechanisms of the auditory cortex to enable acoustic localisation. The system
is based on certain concepts from the auditory system and by using a recurrent
neural network can dynamically track a sound as it changes azimuthally in the
environment. The first stage in the model determines the azimuth of the sound
source from within the environment by using Cross-Correlation and provides
this angle to the neural predictor to predict the next angle in the sequence with
the use of the recurrent neural network. To train the recurrent neural network
to recognize various speeds, a separate training sub-group was created for each
individual speed. This is to ensure that the network learns the correct temporal
sequence it needs to recognize and provide prediction for the speeds. It has been
shown that within the brain there is short term memory to perform such pre-
diction tasks and in order to forecast the trajectory of an object it is required
that previous positions are remembered to establish predicitons.

The navigation approach of Chokshi et al. [3] is based on modeling the place
cells by using self-organising maps. The overall aim of this approach is to lo-
calise a robot using two locations based on visual stimulus. An internal rep-
resentation of the world is produced by the robot in an unsupervised manner.
The self-organising maps receive visual images that are used to produce internal
representation of the environment that act like place codes using landmarks.
Localisation by the robot is achieved by a particular position being associated
with a specific active neuron. An overall architecture has been developed that
uses modules to do diverse operations such as visual information derivation and
motor control. The localisation was performed using a Khepera robot in an en-
vironment divided into 4 sections. These sections were also divided into squares
that were used to determine the place cell error. Landmarks of different coloured
cubes and pyramids were positioned at the edge of the environment. Each square
represented a place cell, with the training and testing involving the images asso-
ciated with each cell. An interesting finding of this study was that as the robot
approached a specific landmark it was found that the appropriate place cell in
the self-organising map output layer had great activation and once this robot
leaves the landmark the activation reduces until it reaches 0. Clustering was
also seen for landmarks that were close together and distinct landmarks were
positioned further apart on the self-organising map.

The first language model based on multimodal inputs from the MirrorBot
project considered in this book, is that of Markert et al. [18] who have de-
veloped an approach that through associative memories and sparse distributed
representations can associate words with objects and characteristics of the ob-
ject and actions. The approach enables a robot to process language instructions
in a manner that is neurobiologically inspired using cell assemblies. The funda-
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mental concept behind the cortical model developed is the use of cortical regions
for different properties of an entity. Hence, a feature of the cortical model is the
combining of visual, tactile, auditory language, goal and motor regions. Each
of the regions is implemented using a spike counter architecture. Looking at re-
gional activations it is possible to describe how inputs from multiple modalities
are combined to create an action.

This language model using multimodal inputs is also used by Fay et al [4]
who developed a neurobiologically plausible robotic system that combines visual
attention, object recognition, language and action processing using neural asso-
ciative memory. This involves finding and pointing with the camera at a specific
fruit or object in a complex scene based on a spoken instruction. This requires
the understanding of the instruction, relating the noun with a specific object
that is recognised using the camera and coordinating motor output with plan-
ning and sensory information processing. The kinds of spoken commands that
the robot is able to parse include ‘bot show plum and ‘bot put apple to yellow
cup’. In the architecture preprocessing involves extracting features from the au-
ditory and the visual input chosen by attention control. The cortical model used
to perform speech recognition, language processing, action planning and object
recognition consists of various neural networks such as radial basis networks and
associator networks. A speech recogniser is used to receive the language instruc-
tion which is checked for syntactic consistency. This work is closely related to the
work by Knoblauch and Pulvermüller described above. If the word sequence is
syntactically correct the global goal is divided into a sequence of subgoals whose
solution fulfills the overall goal. Object recognition is performed by a hierarchy of
radial-basis-function networks which divide a complex recognition task into var-
ious less complex tasks. The model is able to associate a restricted set of objects
with sentence like language instructions by associating the noun with properties
of the object such as colour and actions. The model is of particular significance
to this book as it shows how data from diverse modalities of language and vision
can be brought together to perform actions.

Wermter et al. [48] produce two architectures that are able to successfully
combine the three input modalities of high-level vision, language instructions
and motor directions to produce simulated robot behaviour. The flat multi-
modal architecture uses a Helmholtz machine and receives the three modalities
at the same time to learn to perform and recognise the three behaviours of ‘go,
‘pick’ and ‘lift’ . The hierarchical architecture at the lower-level uses a Helmholtz
machine and at the upper-level a SOM to perform feature binding. These mul-
timodal architectures are neuroscience-inspired by using concepts from action
verb processing based on neurocognitive evidence of Pulvermüller and specifi-
cally features of the mirror neuron system. The architectures are able to display
certain features of the mirror neuron system which is a valuable development as
the activation patterns for both the performance of the action and its recogni-
tion are close. Furthermore, we are able to indicate the role played by the mirror
neuron system in language processing. A particular interesting finding obtained
with the hierarchical architecture is that certain neurons in the Helmholtz ma-
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chine layer of the hierarchical model respond only to the motor input and so
act like the canonical neurons in area F5 and others to the visual stimulus and
so are analogous to the mirror neurons. Furthermore, the lower-level Helmholtz
machine is analogous to area F5 of the primate cortex and the SOM area to area
F6. The F5 area contains neurons that can produce a number of different grasp-
ing activities. F6 performs as a switch, facilitating or suppressing the effects of
F5 unit activations so that only the required units in the F5 region are activated
to perform or recognise the required action.

An additional multimodal model from the MirrorBot project described in this
book is that of Ménard et al. [20] which is a self-organising approach inspired
by cortical maps. When an input is given to the map, a distributed activation
pattern appears. From this a small group of units is selected by mutual inhibition
that contains the most active units. Unlike Kohonens self-organising maps where
this decision is made based on a global winner-takes-all approach, the decision is
based on a numerical distribution process. The fundamental processing element
of the Biologically-Inspired Joint Associative MAps (BIJAMA) model is a disk-
shaped map consisting of identical processing units. The global behaviour of
the map incorporates adaptive matching procedures and competitive learning.
Ménard et al. [20] use several self-organising maps that are linked to one another
to achieve cooperate processing by achieving word-action association. This multi-
associative model is used to associate multimodalities of language and action and
is able to deal with an association between modalities that is not one-one. The
main issue associated with this approach is that learning in a map is dependent
on the other maps, so that the inter-map connectivity biases the convergence to
a certain state. The model is able to organise word representation in such a way
that for instance a body word is associated with a body action.

Panchev [24] also developed a multimodal language processing model related
to the MirrorBot project. This model uses a spiking neural model that is able
to recognise a human instruction and then produce robot actions. Learning is
achieved through leaky Integrate-And-Fire neurons that have active dendrites
and dynamic synapses. Using spiking neurons the overall aim of this research is
to model the primary sensory regions, higher cognitive functional regions and
motor control regions. Hence, in this architecture there are modules that are
able to recognise single word instructions, recognise objects based on colour and
shape and a control system for navigation. The model uses a working memory
that is based on oscillatory activity of neural assemblies from the diverse modal-
ities. As this is one of the first robot control models that is based on spiking
neurons it offers the opportunity to consider new behaviours and computational
experiments that could be compared with the activity identified in the brain.
This research is a significant contribution to the MirrorBot project as it shows
the use of spiking neurons for spatiotemporal data processing. It is felt that
as this model is able to approximate current neuroscience evidence it could di-
rectly address future neuroscience studies in the area of multimodal language
processing. A future direction of this work is to consider the incorporation of
goal behaviours by having certain objects more attractive than others.
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5 Biomimetic Cognitive Behaviour in Neural Robots

We now turn to the chapters in the book that relate to research into biomimetic
robots outside the MirrorBot project. The chapters summarised in this section
show the diversity necessary to build biomimetic intelligent systems.

Reinforcement and reward based learning has proved a successful technique
in biomimetic robots. In this book there are four chapter related to this tech-
nique from Jasso and Triesch [15], Hafner and Kaplan [10], Sung et al. [42] and
Sheynikhovich et al. [39]. Jasso and Triesch [15] who consider the development of
a virtual reality platform that is useful for biomimetic robots as it can be used to
model cognitive behaviour. This environment allows the examination how cogni-
tive skills are developed as it is now understood that these skills can be learned
through the interaction with the parent and the environment in changeable so-
cial settings. This learning relates to visual activities such as gaze and point
following and shared attention skills. Usually the models incorporate a single
child and a parent. The environment is a room that contains objects and furni-
ture and virtual agents that receive images from their camera. These images are
processed and used to influence the behaviour of the agent. The chapter shows
that the platform is suitable for modeling how gaze following emerges through
infant-parent interactions. Gaze following is the capacity to alter ones own at-
tention to an object that is the attention of another person. The environment
consists of a living room containing toys and furniture and contains a parent
agent and child agents. The child agents use reinforcement learning to alter its
gaze to that of the parent based on a reward.

Hafner and Kaplan [10] in this book present research on biomimetic robots
that are able to learn and understand pointing gestures from each other. Using
a simple feature-based neural approach it is possible to achieve discrimination
between left and right pointing gestures. The model is based on reward mecha-
nisms and is implemented on two AIBO robot dogs. The adult robot is positioned
pointing to an object using its left or right front leg and the child robot is po-
sitioned watching it. From the pointing gesture, the child robot learns to guess
the direction of the object the adult robot is attending to and starts searching
for it. The experiment used different viewing angles and distances between the
two robots as well as different lighting conditions. This is a first step in order to
bootstrap shared communication systems between robots by attention detection
and manipualtion.

A further learning approach for biomimetic robots is that of Sung et al.
[42] who use grid based function approximators for reinforcement learning. The
approach uses techniques gained from active learning to achieve active data
acquisition and make use of Q-learning methods that incorporate piecewise linear
grid-based approximators. A feature of active learning is active data acquisition
with algorithms being developed to reduce the effort required to produce training
data. The learning algorithm that relates piecewise linear based approximators
to reinforcement learning consists of two components. The first component is
used for data acquisition for learning and the second carries out the learning.
The suitability of the approach is tested on the ’Mountain-Car’ problem which
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is typically used to evaluate reinforcement learning approaches. When doing so
it was found that the number of required state transitions during learning was
reduced. It is anticipated that this approach will be applicable to reinforcement
learning for a real-world problem.

As navigation is such an important activity for biomimetic robots this book
includes a second chapter on this by Sheynikhovich et al. [39]. Their biologically
inspired model is based on rodent navigation. The model is multimodal in that
it combines visual inputs from images and odometer readings to produce fir-
ing in artificial place cells using Hebbian synapses. By using reinforcement type
learning the model is able to recreate behaviours and actual neurophysiologi-
cal readings from the rodent. Although the model starts with no knowledge of
the environment learning occurs through populations of place cells as the arti-
ficial rodent interacts with the environment. In the model visual information is
correlated with odometer data related to the rotation and displacement using
Hebbian learning in order that ambiguity in the visual data is resolved using the
odometer readings. The model was implemented on a simulator and a mobile
Khephera robot and is able to achieve similar performance to animals. This was
seen when the robot learned the navigational task of reaching a hidden plat-
form from random positions in the environment. In training the robot was given
reward each time it found the platform and was able overtime to reduce the
number of steps required to find the platform.

With regards to biomimetic learning the approach of Bach [2] looks at using
distributed and localised representations to achieve learning and planning. To
perform plan-based control there is a need to have a localist representation of
the objects and events in the model of the world. In this approach composi-
tional hierarchies implemented using MicroPsi node nets are used as a form of
executable semantic networks that are seen as knowledge-based artificial neural
networks. By using MicroPsi node nets it is possible to achieve backpropagation
learning and symbolic plan representations. MicroPsi agents have a group of mo-
tivational variables that determine demands that direct how the agent performs.
In the first instance, the agent does not know what actions will fulfill their de-
sires and so performs trial-and-error actions. When the action is felt to have a
positive impact on the demand a link is established between them. Experiments
are performed by using a simulated environment that provides the agents with
resources and dangers.

Folgheraiter and Gini [5] have developed an artificial robotic arm that repli-
cates the functionality and structure of the human arm. In order to test the
control system architecture the arm was developed with a spherical joint with
3 degrees of freedom, and an elbow with 1 degree of freedom. The control is
arranged in a modular-hierarchical manner that has three levels: the lower level
replicates the spinal reflexes that is used to control artificial muscle activities; the
middle level produces the required arm movement trajectories; and at the higher
level the circuits in the cerebral cortex and the cerebellum are found to control
the path generator operation. The model uses a multilayer perceptron in order
to solve the inverse kinematics problem as it is possible to train the network from
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actual readings from the human arm. In order to model the reflex behaviours a
simplified model of the human spinal cord was used that concentrates on mod-
eling membrane potential instead of spiking behaviour of the neurons. By using
light materials it is possible to include this arm into a humanoid robot.

The next chapter in this book includes a model of human-like controlling of
a biped robot [38]. Humanoid robots require complex design and complicated
mathematical models. Scarfogliero et al. [38] demonstrate that a Light Adaptive-
Reactive biped is simple, cheap and effective and is able to model the human
lower limb. By use of this model it is possible to understand how humans walk
and how this might be incorporated into a robot. The model is able to alter
joint stiffness for position-control by use of servo motors. Scarfogliero et al.
[38] devised a motor device based on torsional spring and damper to recreate
the elastic characteristics of muscles and tendons. By using this approach it is
possible to have good shock resistance and to determine the external load. As
the robot uses location and velocity feedback it is able to perform a fine position
operation even though it has no a-priori knowledge of external load.

The chapter in this book by Meng and Lee [21] considers the production of a
biologically plausible novelty habituation model based on topological mapping
for sensory-motor learning. Meng and Lee [21] examine embedded developmen-
tal learning algorithms by using a robotic system made up of two arms that are
fitted with two-fingered gripper and a pan/tilt head that includes a colour cam-
era. This robot is built in such away that it recreates the positioning of the head
and arms of a child. Novelty and habituation are fundamental for early learning
by assisting a system to examine new events/places while still monitoring the
current state to gain experience for the full environment. The chapter considers
the problem of sensory-motor control of limbs based on a childs arm movements
during the first three months of life. Learning is achieved through a hierarchical
mapping arrangement which consists of fields of diverse sizes and overlap at di-
verse mapping levels. The fields include local information such as sensory data
and data on movement from the motor and stimulus data. The maps contain
units known as fields that are receptive regions. In the experiments various pa-
rameters are considered such as the condition of the environment, field extent
and habituation variables. By using the concepts from novelty and habitation as
the basis of early robot learning it is possible to learn sensory-motor coordination
skills in the critical areas first, before going onto the less critical areas. Hence, the
robot uses novelty to learn to coordinate motor behaviour with sensory feedback.

Robot control using visual information was performed by Hermann et al.
[14] to examine modular learning using neural networks for biomimetic robots.
This chapter describes a modular architecture that is used to control the po-
sition/orientation of a robot manipulator by feedback from the visual system.
The outlined modular approach is felt to overcome some of the main limitations
associated with neural networks. Using modular learning is a useful approach for
robots as there is limited data for training, robots must function in real-time in a
real-time environment. A single neural network may not be sufficient to perform a
complex task, however by using a modular sequential and bidirectional arranges
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of neural modules solutions can be found. Motivated by biological modularity
Hermann et al. [14] use extended Kohonen maps that combine a self-organising
map with ADA-Line networks (SOM-LLM) in the modular model. This neural
network approach was selected as the SOM-LLM is simple and offers a topo-
logical representation. To test the modular architecture it was used to control a
robot arm using two cameras that are positioned on a robot head. This chapter
is able to offer an approach that can combine a set of neural modules that can
converge and so learn complex systems.

In the area of RoboCup Mayer et al. [19] have developed a neural detection
system that achieves colour-based attention control and neural object recogni-
tion to determine whether another robot is observed. The ability to recognise
teammate robots and opposition robots is fundamental for robot soccer games.
Problems associated with self-localisation and communication between robot
teammates has lead to the need for an approach that is able to detect team-
mates and the opposition in a reliable manner based on vision. The approach
identified in Mayer et al. [19] in this book uses the following steps (i) identify
region of interest; (ii) gain features from this region; (iii) classify the features
using neural networks; and (iv) arbitrate the classification outcome to establish
if a robot is recognised and whether it is part of the own or opposition team.
Regions of interest are typically determined using blob search using a segmented
and colour-indexed picture. The types of features that are used in the robot are
width, how much black is in the image and an orientation histogram. Once the
features are established they are passed into two multilayer preceptron neural
networks that are used to classify the features. One network was used to process
the simple features and the other for the orientated histogram levels. These two
networks produce a probability value stating if a robot is present. A decision as
to whether a robot is present is based on whether the joint probablity from these
two neural networks is greater than a threshold. The team the robot belongs to
depends on the recognition of a colour marker. This approach has proved to give
very good performance when classifing the presence of a robot and whether it
belongs to the opposition or the own team.

Two approaches for visual homing using a descriptor that characterises local
image sections in a scale invariant fashion are considered by Vardy and Oppacher
[45] in this book. Visual homing is returning to a location by contrasting the
current image with the one at the goal. This approach is based on the behaviour
of insects like bees or ants. The two homing approaches rely on edges being
extracted from the input images using a Sobel filter. The first approach uses the
common technique of corresponding descriptors among images and the second
approach establishes a home vector by determining the local image regions which
are most similar between the two images, and assuming that these correspond
to the foci of expansion and contraction. This second approach makes use of the
structure of the motion field for pure translation. The second method found a
home vector more directly using the stationary local image region closest from
the two images. The first approach was able to out-perform the warping method,
while the second performs equivalently to the warping method.
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6 Conclusion

As can be seen from this book there is much research being carried out towards
biomimetic robots. In particular, the MirrorBot project has contributed to the
development of biomimetic robots by taking neuroscience evidence and produc-
ing neural models, but also several other joint European projects have worked
in the same direction (SpikeFORCE, BIOLOCH, CIRCE, CYBREHAND, MIR-
ROR). The breadth of the international research community sharing the research
goal of biomimetic robotics can be seen not only from the contributions to this
workshop, but also from many closely related conferences that have been organ-
ised in recent years. The chapters included in this book show that the MirrorBot
project has successfully developed models that are able to check the syntactic
consistency of word sequences, visually explore scenes and integrate multiple
inputs to produce sophisticated robotics systems. This shows that we can over-
come the present limitations of robotics and improve on some of the progress
made by basing robots on biological inspiration such as the mirror neuron con-
cept and modular cerebral cortex organisation of actions. The second part of
the book shows the diversity of the research in the field of biomimetic neural
robot learning. Although this research produces different approaches to diverse
sets of robot function they are all connected by performance, flexibility and
reliability that can be achieved by those based on biological systems. The bio-
logical systems thereby act as a common guideline for these diverse, cooperative,
cooperating and competing approaches. Hence, there is a need to base robotic
systems on biological concepts to achieve robust intelligent systems. As shown
in this book the current progress in biomimetic robotics is significant, however
more time is needed before we see it in full operation showing fully autonomous
biomimetic robots.
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Abstract. Neuroscientific research has unveiled neural mechanisms mediating 
between the personal experiential knowledge we hold of our lived body, and the 
implicit certainties we simultaneously hold about others. Such personal, body-
related experiential knowledge enables our intentional attunement with others, 
which in turn constitutes a shared manifold of intersubjectivity. This we-centric 
space allows us to personally characterize and provide experiential 
understanding to the actions performed by others, and the emotions and 
sensations they experience. A direct form of "experiential understanding" is 
achieved by modeling the behavior of other individuals as intentional 
experience on the basis of the equivalence between what the others do and feel 
and what we do and feel. This parsimonious modeling mechanism is embodied 
simulation. The mirror neuron system is likely a neural correlate of this 
mechanism. This account shades some light on too often sidelined aspects of 
social cognition. More generally, it emphasizes the role played in cognition by 
neural sensory-motor integration. 

1   Introduction 

The dominant view in cognitive science is to put most efforts in clarifying what are 
the formal rules structuring a solipsistic, representational mind. Much less 
investigated is what triggers the sense of social identity that we experience with the 
multiplicity of “other selves” populating our social world. Is the solipsistic type of 
analysis inspired by folk-psychology.  The exclusive explanatory approach to social 
cognition? In particular, is it doing full justice to the phenomenal aspects of our social 
intentional relations? My answer is no to both questions. 

At difference with Mr. Spock, the famous alien character of the Star Trek saga, our 
social mental skills are not confined to a declarative, conceptualized, and objective 
perspective. Normally, we are not alienated from the actions, emotions and sensations 
of others, because we are attuned to the intentional relations of others. By means of 
intentional attunement, “the others” are much more than being different 
representational systems; they become persons, like us. 
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In the present paper I will show that the same neural circuits involved in action 
control and in the first person experience of emotions and sensations are also active 
when witnessing the same actions, emotions and sensations of others, respectively. I 
will posit that the mirror neuron systems, together with other mirroring neural clusters 
outside the motor domain, constitute the neural underpinnings of embodied 
simulation, the functional mechanism at the basis of intentional attunement.  

This paper is exclusively focused on the relationships between the mirror neuron 
system, embodied simulation and the experiential aspects of social cognition. A 
longer and more elaborate version will appear soon in Phenomenology and the 
Cognitive Sciences [15]. For sake of concision, many other issues related to mirror 
neurons and simulation will not be addressed here. The vast literature on the mirror 
neuron system in humans and its relevance for theory of mind, imitation and the 
evolution of language is reviewed and discussed in several papers [17, 43, 45, 12, 42, 
44, 20, 4]. For an analysis of the role played by embodied simulation in conceptual 
structure and content, see [18]. 

2   The Mirror Neuron System for Actions in Monkeys and 
Humans: Empirical Evidence 

About ten years ago we discovered in the macaque monkey brain a class of premotor 
neurons that discharge not only when the monkey executes goal-related hand actions 
like grasping objects, but also when observing other individuals (monkeys or humans) 
executing similar actions. We called them “mirror neurons” [21, 46]. Neurons with 
similar properties were later discovered in a sector of the posterior parietal cortex 
reciprocally connected with area F5 (PF mirror neurons, see [45, 22]). 

The observation of an object-related hand action leads to the activation of the same 
neural network active during its actual execution. Action observation causes in the 
observer the automatic activation of the same neural mechanism triggered by action 
execution. We proposed that this mechanism could be at the basis of a direct form of 
action understanding [21, 46] see also [10, 11, 12, 13, 14, 20, 45, 44]. 

Further studies carried out in our lab corroborated and extended our original 
hypothesis. We showed that F5 mirror neurons are also activated when the final 
critical part of the observed action, that is, the hand-object interaction, is hidden [49]. 
In a second study we showed that a particular class of F5 mirror neurons, “audio-
visual mirror neurons” can be driven not only by action execution and observation, 
but also by the sound produced by the same action [41]. “Audio-visual mirror 
neurons” respond to the sound of actions and discriminate between the sounds of 
different actions, but do not respond to other similarly interesting sounds such as 
arousing noises, or monkeys’ and other animals’ vocalizations. It doesn’t significantly 
differ at all for the activity of this neural network if a peanut being broken, is 
specified at the motor, visual or auditory level. Such neural mechanism enables to 
represent the consequences of an action, thus its goal, in a way that is in principle also 
open to misrepresentation (e.g. neurons responding to a sound different from that 
produced by the action coded by them when executed or observed). Furthermore, the 
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same conceptual content (“the goal of action A”) results from a multiplicity of states 
subsuming it, namely, differently triggered patterns of activations within a population 
of “audio-visual mirror neurons”. These neurons instantiate sameness of 
informational content at a quite “abstract” level. If the different mode of presentation 
of events as intrinsically different as sounds, images, or voluntary body actions, is 
nevertheless bound together within the same neural substrate, what we have is a 
mechanism instantiating a form of conceptualization. This perspective can be 
extended to other parts of the sensory-motor system (see [18]). 

Furthermore, this perspective seems to suggest that thought may not be entirely 
separate from what animals can do, because it directly uses sensory-motor bodily 
mechanisms — the same ones used by non-human primates to function in their 
environments. According to this hypothesis, thought is at least partly an exaptation of 
the neural activities underpinning the operations of our bodies. 

We recently explored the most lateral part of area F5 where we described a 
population of mirror neurons related to the execution/observation of mouth actions 
[8]. The majority of these neurons discharge when the monkey executes and observes 
transitive, object-related ingestive actions, such as grasping, biting, or licking. 
However, a small percentage of mouth-related mirror neurons discharge during the 
observation of intransitive, communicative facial actions performed by the 
experimenter in front of the monkey, such as lip protrusion and lips-smacking [8]. 

Several studies using different experimental methodologies and techniques have 
demonstrated also in the human brain the existence of a mirror neuron system 
matching action perception and execution. During action observation there is a strong 
activation of premotor and parietal areas, the likely human homologue of the monkey 
areas in which mirror neurons were originally described (for a review, see [45, 12, 44, 
14]. Furthermore, the mirror neuron matching system for actions in humans is 
somatotopically organized, with distinct cortical regions within the premotor and 
posterior parietal cortices being activated by the observation/execution of mouth, 
hand, and foot related actions [5]. 

A recent brain imaging study, in which human participants observed 
communicative mouth actions performed by humans, monkeys and dogs showed that 
the observation of communicative mouth actions led to the activation of different 
cortical foci according to the different observed species. The observation of human 
silent speech activated the pars opercularis of the left inferior frontal gyrus, a sector of 
Broca’s region. The observation of monkey lip-smacking activated a smaller part of 
the same region bilaterally. Finally, the observation of the barking dog activated only 
exstrastriate visual areas. Actions belonging to the motor repertoire of the observer 
(e.g., biting and speech reading) or very closely related to it (e.g. monkey’s lip-
smacking) are mapped on the observer’s motor system. Actions that do not belong to 
this repertoire (e.g., barking) are mapped and henceforth categorized on the basis of 
their visual properties [6]. 

The involvement of the motor system during observation of communicative mouth 
actions is also testified by the results of a TMS study by Watkins et al. (2003) [50], in 
which they showed that the observation of communicative, speech-related mouth 
actions, facilitate the excitability of the motor system involved in the production of 
the same actions. 
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3   Action Observation as Action Simulation 

The mirror neuron system for action is activated both by transitive, object-related and 
intransitive, communicative actions, regardless of the effectors performing them. 
When a given action is planned, its expected motor consequences are forecast. This 
means that when we are going to execute a given action we can also predict its 
consequences. The action model enables this prediction. Given the shared sub-
personal neural mapping between what is acted and what is perceived – constituted by 
mirror neurons – the action model can also be used to predict the consequences of 
actions performed by others. Both predictions (of our actions and of others' actions) 
are instantiations of embodied simulation, that is, modeling processes. 

The same functional logic that presides over self-modeling is employed also to 
model the behavior of others: to perceive an action is equivalent to internally 
simulating it. This enables the observer to use her/his own resources to experientially 
penetrate the world of the other by means of a direct, automatic, and unconscious 
process of simulation. 

Embodied simulation automatically establishes a direct experiential link between 
agent and observer, in that both are mapped in a neutral fashion. The stimuli whose 
observation activates mirror neurons, like a grasping hand, its predicted outcome, and 
the sound it produces, all consist of the specific interaction between an agent and a 
target. It is the agentive relational specification to trigger the mirror neurons’ 
response. The mere observation of an object not acted upon indeed does not evoke 
any response. Furthermore, the effector-target interaction must be successful. Mirror 
neurons respond if and only if an agentive relation is practically instantiated by an 
acting agent, regardless of its being the observer or the observed. The agent parameter 
must be filled. Which kind of agent is underspecified, but not unspecified. Indeed, not 
all kinds of agents will do. The abovementioned brain imaging experiment on 
communicative actions shows that only stimuli consistent with or closely related to 
the observer’s behavioral repertoire are effective in activating the mirror neuron 
system for actions [6].  

To summarize, action observation constitutes a form of embodied simulation of 
action. This, however, is different from the simulation processes occurring during 
motor imagery. The main difference is what triggers the simulation process: an 
internal event – a deliberate act of will –in the case of motor imagery, and an external 
event, in the case of action observation. This difference leads to slightly different and 
non-overlapping patterns of brain activation (see [12, 13]). However, both conditions 
share a common mechanism: the simulation of actions by means of the activation of 
parietal and premotor cortical networks. I submit that this simulation process also 
constitutes a basic level of experiential understanding, a level that does not entail the 
explicit use of any theory or declarative representation. 

4   The Mirror Neuron System and the Understanding of Intentions 

According to my hypothesis, "intentional attunement" is a basic requisite for social 
identity. In that respect, I think that monkeys may exploit the mirror neuron system to 
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optimize their social interactions. At least, the evidence we have collected so far 
seems to suggest that the mirror neuron system for actions is enough sophisticated to 
enable its exploitation for social purposes. Recent results by Cisek and Kalaska 
(2004) [7] show that neurons in the dorsal premotor cortex of the macaque monkey 
can covertly simulate observed behaviors of others, like a cursor moved to a target on 
a computer screen, even when the relation between the observed sensory event and 
the unseen motor behavior producing it is learned through stimulus-response 
associations. My hypothesis is that monkeys might entertain a rudimentary form of 
"teleological stance", a likely precursor of a full-blown intentional stance. This 
hypothesis extends to the phylogenetic domain the ontogenetic scenario proposed by 
Gergely and Csibra (2003) [23] for human infants. But monkeys certainly do not 
entertain full-blown mentalization. Thus, what makes humans different? First of all, 
from a behavioral point of view human infants for years heavily rely on interactions 
with their caregivers and with other individuals to learn how to cope with the world. 
This is an important difference between humans and other species that may play a 
major role in bootstrapping more sophisticated cognitive social skills. 

At present we can only make hypotheses about the relevant neural mechanisms 
underpinning the mentalizing abilities of humans that are still poorly understood from 
a functional point of view. In particular, we do not have a clear neuroscientific model 
of how humans can understand the intentions promoting the actions of others they 
observe. A given action can be originated by very different intentions. Suppose one 
sees someone else grasping a cup. Mirror neurons for grasping will most likely be 
activated in the observer’s brain. A simple motor equivalence between the observed 
action and its motor representation in the observer’s brain, however, can only tell us 
what the action is (it's a grasp) and not why the action occurred. Determining why 
action A (grasping the cup) was executed, that is, determining its intention, can be 
equivalent to detecting the goal of the still not executed and impending subsequent 
action (say, drink from the cup). In a recent fMRI study [38] we showed that premotor 
mirror neurons-related areas not only code the "what" of an action but also its "why", 
that is, the intention promoting it. Detecting the intention of Action A is equivalent to 
predict its distal goal, that is, the goal of the subsequent Action B. 

These results are consistent with those of another recently published fMRI study. 
Schubotz and von Cramon (2004) [47] contrasted the observation of biological hand 
actions with that of abstract motion (movements of geometric shapes). In both 
conditions 50% of the stimuli failed to attain the normally predictable end-state. The 
task of participants was to indicate whether the action was performed in a goal-
directed manner (button “yes”) or not (button “no”). After abstract motion 
observation, participants had to indicate whether the object sequence was regular until 
the end of presentation (button yes) or not (button no). Results showed that both 
conditions elicited significant activation within the ventral premotor cortex. In 
addition, the prediction of biological actions also activated BA 44/45, which is part of 
the mirror neuron system. Schubotz and von Cramon (2004) [47] concluded that their 
findings point to a basic premotor contribution to the representation or processing of 
sequentially structured events, supplemented by different sets of areas in the context 
of either biological or non biological cues. 
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The statistical frequency of action sequences (the detection of what most frequently 
follows what) as they are habitually performed or observed in the social environment, 
can therefore constrain preferential paths of inferences/predictions. It can be 
hypothesized that this can be accomplished by chaining different populations of mirror 
neurons coding not only the observed motor act, but also those that in a given context 
would normally follow. Ascribing intentions would therefore consist in predicting a 
forthcoming new goal. If this is true, it follows that one important difference between 
humans and monkeys could be the level of recursivity attained by the mirror neuron 
system in our species. A similar proposal has been recently put forward in relation to 
the faculty of language (see [36, 9]). According to this perspective, action prediction 
and the ascription of intentions are related phenomena, underpinned by the same 
functional mechanism. In contrast with what mainstream cognitive science would 
maintain, action prediction and the ascription of intentions therefore do not belong to 
different cognitive realms, but both pertain to embodied simulations underpinned by 
the activation of chains of logically-related mirror neurons.  

Many scholars are exclusively focusing on clarifying differences between humans 
and other primates with respect to the use of propositional attitudes. According to this 
mainstream view, humans have Theory of Mind, non-human primates don't. This in 
my opinion squares to a "Ptolemaic Paradigm", with a very strong anthropocentric 
aftertaste. This paradigm so pervasive in contemporary cognitive science is too quick 
in establishing a direct and nomological link between our use of propositional 
attitudes and their supposed neural correlates. No one can deny that we use 
propositional attitudes, unless embracing a radical eliminativism (which is not my 
case). But it is perfectly possible that we will never find boxes in our brain containing 
the neural correlates of beliefs, desires and intentions as such. Such a search is the real 
reductionism. 

As pointed out by Allen and Bekoff (1997) [1], this "all-or-nothing" approach to 
social cognition, this desperate search for a "mental Rubicon" (the wider the better) is 
strongly arguable. When trying to account for our cognitive abilities we forget that 
they are the result of a long evolutionary process. It is reasonable to hypothesize that 
this evolutionary process proceeded along a line of continuity (see [17, 22]). 

It is perhaps more fruitful to establish to which extent different cognitive strategies 
may be underpinned by similar functional mechanisms, which in the course of 
evolution acquire increasing complexity. The empirical data briefly reviewed in this 
chapter are an instantiation of this strategy of investigation. The data on mirror neurons 
in monkeys and mirroring circuits in the human brain seem to suggest that the ease 
with which we are capable to "mirror" in the behavior of others, and recognize them as 
similar to us, - in other words, our "Intentional Attunement" with others - may rely on a 
series of matching mechanisms that we have just started to uncover. 

5   Mirroring Emotions and Sensations 

Emotions constitute one of the earliest ways available to the individual to acquire 
knowledge about its situation, thus enabling to reorganize this knowledge on the basis 
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of the outcome of the relations entertained with others. The coordinated activity of 
sensory-motor and affective neural systems results in the simplification and 
automatization of the behavioral responses that living organisms are supposed to 
produce in order to survive. The integrity of the sensory-motor system indeed appears 
to be critical for the recognition of emotions displayed by others (see [2, 3]), because 
the sensory-motor system appears to support the reconstruction of what it would feel 
like to be in a particular emotion, by means of simulation of the related body state. 

We recently published an fMRI study showing that experiencing disgust and 
witnessing the same emotion expressed by the facial mimicry of someone else, both 
activate the same neural structure – the anterior insula – at the same overlapping 
location [51]. This suggests, at least for the emotion of disgust, that the first- and 
third-person experiences of a given emotion are underpinned by the activity of a 
shared neural substrate. When I see the facial expression of someone else, and this 
perception leads me to experience that expression as a particular affective state, I do 
not accomplish this type of understanding through an argument by analogy. The 
other’s emotion is constituted, experienced and therefore directly understood by 
means of an embodied simulation producing a shared body state. It is the activation of 
a neural mechanism shared by the observer and the observed to enable direct 
experiential understanding. A similar simulation-based mechanism has been proposed 
by Goldman and Sripada (2004) [30] as “unmediated resonance”. 

Let us focus now on somatic sensations as the target of our social perception. As 
repeatedly emphasized by phenomenology, touch has a privileged status in making 
possible the social attribution of lived personhood to others. “Let’s be in touch” is a 
common clause in everyday language, which metaphorically describes the wish of 
being related, being in contact with someone else. Such examples show how the 
tactile dimension be intimately related to the interpersonal dimension. 

New empirical evidence suggests that the first-person experience of being touched 
on one’s body activates the same neural networks activated by observing the body of 
someone else being touched [40]. Within SII-PV, a multimodal cortical region, there 
is a localized neural network similarly activated by the self-experienced sensation of 
being touched, and the perception of an external tactile relation. This double pattern 
of activation of the same brain region suggests that our capacity to experience and 
directly understand the tactile experience of others could be mediated by embodied 
simulation, that is, by the externally triggered activation of some of the same neural 
networks presiding over our own tactile sensations. A similar mechanism likely 
underpins our experience of the painful sensations of others (see [35, 48]). 

6   The Many Sides of Simulation 

The notion of simulation is employed in many different domains, often with different, 
not necessarily overlapping meanings. Simulation is a functional process that 
possesses a certain representational content, typically focusing on possible states of its 
target object. For example, in motor control theory simulation is characterized as the 
mechanism employed by forward models to predict the sensory consequences of 
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impending actions. According to this view, the predicted consequences are the 
simulated ones.  

In philosophy of mind, on the other hand, the notion of simulation has been used 
by the proponents of Simulation Theory of mind reading to characterize the pretend 
state adopted by the attributer in order to understand others’ behavior (see [31, 32, 33, 
34, 24, 25, 26, 27, 28, 17, 29]). 

I employ the term “embodied simulation” as an automatic1, nonconscious, and pre-
reflexive functional mechanism, whose function is the modeling of objects, agents, 
and events. Simulation, as conceived of in the present paper, is therefore not 
necessarily the result of a willed and conscious cognitive effort, aimed at interpreting 
the intentions hidden in the overt behavior of others, but rather a basic functional 
mechanism of our brain. However, because it also generates representational content, 
this functional mechanism seems to play a major role in our epistemic approach to the 
world. It represents the outcome of possible actions, emotions, or sensations one 
could take or experience, and serves to attribute this outcome to another organism as a 
real goal-state it is trying to bring about, or as a real emotion or sensation it is 
experiencing. 

Successful perception requires the capacity of predicting upcoming sensory events. 
Similarly, successful action requires the capacity of predicting the expected 
consequences of action. As suggested by an impressive and coherent amount of 
neuroscientific data (for a review, see [12, 18]), both types of predictions seem to 
depend on the results of unconscious and automatically driven neural states, 
functionally describable as simulation processes. 

To which extent embodied simulation is a motor phenomenon? According to the 
use I make of this notion, embodied simulation is not conceived of as being 
exclusively confined to the domain of motor control, but rather as a more general and 
basic endowment of our brain. It applies not only to actions or emotions, where the 
motor or viscero-motor components may predominate, but also to sensations like 
vision and touch. It is mental because it has content. It is embodied not only because 
it is neurally realized, but also because it uses a pre-existing body-model in the brain 
realized by the sensory-motor system, and therefore involves a non-propositional 
form of self-representation. 

7   Conclusions 

We have discovered some of the neural mechanisms mediating between the multi 
level experiential knowledge we hold of our lived body, and the implicit certainties 
we simultaneously hold about others. Such body-related experiential knowledge 
enables us to directly understand some of the actions performed by others, and to 
decode the emotions and sensations they experience. Our seemingly effortless 
capacity to conceive of the acting bodies inhabiting our social world as goal-oriented 
persons like us depends on the constitution of a “we-centric” shared meaningful 
interpersonal space. I propose that this shared manifold space (see [11, 12, 13, 14]) 
                                                           
1 It is “automatic” in the sense that it is obligatory. 
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can be characterized at the functional level as embodied simulation, a specific 
mechanism, likely constituting a basic functional feature by means of which our 
brain/body system models its interactions with the world. 

The mirror neuron matching systems and the other non-motor mirroring neural 
clusters represent one particular sub-personal instantiation of embodied simulation. 
With this mechanism we do not just “see” an action, an emotion, or a sensation. Side 
by side with the sensory description of the observed social stimuli, internal 
representations of the body states associated with these actions, emotions, and 
sensations are evoked in the observer, ‘as if’ he/she would be doing a similar action or 
experiencing a similar emotion or sensation. This proposal also opens new interesting 
perspectives for the study of the neural underpinnings of psychopathological states 
and psychotherapeutic relations (see [19]), and of aesthetic experiences. 

In contrast with what argued by Jacob and Jeannerod (2004, forthcoming) [39], 
social cognition is not only explicitly reasoning about the contents of someone else’s 
mind. Our brains, and those of other primates, appear to have developed a basic 
functional mechanism, embodied simulation, which gives us an experiential insight 
of other minds. The shareability of the phenomenal content of the intentional 
relations of others, by means of the shared neural underpinnings, produces 
intentional attunement. Intentional attunement, in turn, by collapsing the others’ 
intentions into the observer’s ones, produces the peculiar quality of familiarity we 
entertain with other individuals. This is what “being empathic” is about. By means of 
a shared neural state realized in two different bodies that nevertheless obey to the 
same functional rules, the “objectual other” becomes “another self”. Furthermore, 
the mirror neuron system for actions in humans appear to be suitable for the 
detection of the intentions promoting the behavior of others. Thus, as previously 
hypothesized ([17]), the mirror neuron system could be at the basis of basic forms of 
mind reading.  

This of course doesn’t account for all of our social cognitive skills. Our most 
sophisticated mind reading abilities likely require the activation of large regions of 
our brain, certainly larger than a putative domain-specific Theory of Mind Module. 
As correctly pointed out by Jacob and Jeannerod (2004, forthcoming) [39], the same 
actions performed by others in different contexts can lead the observer to radically 
different interpretations. Thus, social stimuli are also understood on the basis of the 
explicit cognitive elaboration of their contextual aspects and of previous 
information. 

The point is that these two mechanisms are not mutually exclusive. Embodied 
simulation is experience-based, while the second mechanism is a cognitive 
description of an external state of affairs. Embodied simulation scaffolds the 
propositional, more cognitively sophisticated mind reading abilities. When the 
former mechanism is not present or malfunctioning, as perhaps in autism (see [16, 
19]), the latter one can provide only a pale, detached account of the social 
experiences of others. It is an empirical issue to determine how much of social 
cognition, language included, can be explained by embodied simulation and its 
neural underpinnings. 
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Abstract. A fundamental prerequisite for language is the ability to dis-
tinguish word sequences that are grammatically well-formed from un-
grammatical word strings and to generalise rules of syntactic serial order
to new strings of constituents. In this work, we extend a neural model
of syntactic brain mechanisms that is based on syntactic sequence de-
tectors (SDs). Elementary SDs are neural units that specifically respond
to a sequence of constituent words AB, but not (or much less) to the
reverse sequence BA. We discuss limitations of the original version of
the SD model (Pulvermüller, Theory in Biosciences, 2003) and suggest
optimal model variants taking advantage of optimised neuronal response
functions, non-linear interaction between inputs, and leaky integration
of neuronal input accumulating over time. A biologically more realistic
model variant including a network of several SDs is used to demonstrate
that associative Hebb-like synaptic plasticity leads to learning of word
sequences, formation of neural representations of grammatical categories,
and linking of sequence detectors into neuronal assemblies that may pro-
vide a biological basis of syntactic rule knowledge. We propose that these
syntactic neuronal assemblies (SNAs) underlie generalisation of syntactic
regularities from already encountered strings to new grammatical word
sequences.

1 Introduction

A fundamental feature of all languages is syntax. The specifically human syn-
tactic capability includes the abilities

– to distinguish learned word sequences that are grammatically well-formed
from new ungrammatical word strings,

– to categorise words into lexical categories, such as noun, verb, adjective etc.,
– to generalise rules of syntactic serial order to new strings of constituents,

which one has never encountered before but are in accordance with the rules
of syntax.
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It is undeniable that these abilities have a neural implementation in the human
brain. However, researchers disagree to what degree the abilities to learn com-
plex sequences, to form lexical categories, and to generalise syntactic rules or
regularities are based on genetically determined and pre-wired circuits [1, 2] or
emerge in a universal learning device as a consequence of associative learning
[3, 4]. We here attempt to address this dispute by demonstrating that, given a
pre-structured network shaped according to known neuroanatomical and neu-
rophysiological properties of the cortex, sequence learning and lexical category
formation are a necessary consequence of associative Hebb-like synaptic learn-
ing. We also suggest that rule generalisation may be based on learned neural
links between the learned lexical category networks.

Before addressing these questions we analyze and extend a recently proposed
cortical model for language related sequence detection [5, 6]. In contrast to al-
ternative models of nonlinear sequence detection, e.g. based on delay lines [7, 8]
or multiplicative low-pass filters [9, 10], our model is linear and can be inter-
preted in terms of cortical microcircuitry and neurophysiological observations of
working-memory related sustained activity [11]. The basic idea of the model is
that a sequence detector (SD) for the word sequence AB receives weak inputs
from the representation of the first word A (via long-range axons ending on distal
apical dendritic sites), and strong inputs from the representation of the second
word B (via axon collaterals of nearby neurons ending on basal dendritic sites).

In section 2 we work out some limitations of the original model with respect to
the limited range of word delays and the limited amplitude difference between its
critical sequence AB and inverse sequence BA. Then we suggest optimized model
variants which make predictions on the time course of word web activations in the
brain. Finally we develop a biologically more realistic network model variant which
consists of many individual SD units. In order to reconcile the two views mentioned
above we demonstrate in section 3 how simple Hebbian learning in our model can
lead to generalisation of sequences and the emergence of grammatical categories.

2 Sequence Detectors (SDs)

2.1 Simple Linear SD Model

A sequence detector (SD) for the sequence (A,B) is a cell, or a set of cells1,
which receives weak input of strength w > 0 from a cell set α representing A,
and strong input of strength s > w from another cell set β representing B [5, 6].
The two input sets are also referred to as word webs (WWs) and represent the
occurrences of sequence set elements by output activities

yα(t) =
∑

i

exp(−(t − tA,i)/τ) · H(t − tA,i) (1)

yβ(t) =
∑

i

exp(−(t − tB,i)/τ) · H(t − tB,i), (2)

1 We have the idea that a single SD is a cell group consisting of many neurons.
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where H(x) is the Heaviside function (H(x) = 1 for x ≥ 0, H(x) = 0 otherwise),
and tA,i is the i-th occurrence of string symbol A and similarly for tB,i. Thus,
the word webs α and β are modeled as linear first-order low-pass filters with
time constant τ > 0.

If word webs α and β are activated once at times tA,1 = 0 and tB,1 = Δ > 0,
respectively, (i.e., β follows α by a delay of Δ), then the membrane potentials
xα,β and xβ,α of the critical sequence detector (α, β) and the inverse sequence
detector (β, α) can be written as the sum of their inputs,

xα,β(t) = w · exp(−t/τ) · H(t) + s · exp(−(t − Δ)/τ) · H(t − Δ) (3)
xβ,α(t) = s · exp(−t/τ) · H(t) + w · exp(−(t − Δ)/τ) · H(t − Δ). (4)

For the output of the sequence detectors we write

yα,β(t) = f(xα,β(t)) (5)
yβ,α(t) = f(xβ,α(t)), (6)

where the activation function f is assumed to be non-linear and sigmoidal, for
example f(x) = H(x − Θ) for a threshold Θ.

Although “on average”, i.e., when integrating the inputs over time, there
is no difference between critical and inverse SDs, the peak value of xα,β(t) can
exceed the peak of xβ,α(t) (see Fig. 1). For w < s, the peak values are

Pα,β := max
t

xα,β(t) = s + w · e−Δ/τ (7)

Pβ,α := max
t

xβ,α(t) = max(s, w + s · e−Δ/τ ). (8)

If we can find a threshold Θ with 0 < Pβ,α < Θ < Pα,β then for f(x) = H(x−Θ)
only the critical sequence detector (α, β), but not the inverse detector (β, α) gets
activated.

When do we obtain Pβ,α < Pα,β , i.e., when can the SD distinguish between
critical and inverse input? The condition is obviously fulfilled if Pβ,α = s, i.e., if
the first input peak for the inverse SD (β, α) is larger than or equal the second
input peak. If the second peak is larger then we have to require s + w · e−Δ/τ >
w + s · e−Δ/τ , or equivalently, (s − w) · (1 − e−Δ/τ ) > 0. This is obviously true
for any s > w and Δ > 0.

Maximal Peak Difference. We want to maximize the peak difference

dP := Pα,β − Pβ,α. (9)

First we determine the optimal delay Δ for fixed w and s. In order to resolve the
max-expression in eq. 8, we have to find out when the first peak of the inverse SD
(β, α) is larger than the second peak. For this we have to resolve s > w+s·e−Δ/τ

for Δ. With

ΔP := −τ · ln(1 − w/s), (10)
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Fig. 1. Working principle of linear sequence detectors (SDs) according to [5]. The plots
show the summed inputs of two SDs obtained from two input units α and β representing
items A and B which occur at times tA and tB > tA, respectively. Left: The critical
SD (α, β) obtains first weak input w from α and then strong input s from β. The
summed input xα,β can exceed threshold Θ at time tB . Right: The inverse SD (β, α)
receives first strong input and then weak input such that the summed input xβ,α does
not exceed Θ. Parameters are τ = 10, w = 0.5, s = 1, tA = 10, tB = 20

we find that the first peak is larger for Δ > ΔP , the second peak is larger for
Δ < ΔP , and the peak values are the same for Δ = ΔP . For Δ ≥ ΔP , the peak
difference is dP = w · e−Δ/τ which decreases monotonically in Δ. For Δ ≤ ΔP ,
the peak difference is dP = (s−w) · (1− e−Δ/τ ), which increases monotonically
in Δ. Together, dP is maximal for Δ = ΔP ,

dP ≤ dP |Δ=ΔP
=

w · (s − w)
s

(11)

Next, we determine optimal w for given s. For this it is sufficient to maximize
w · (s−w) = −w2 + sw. The maximum occurs for −2w + s = 0 and the maximal
peak difference is

dP ≤ dP |Δ=ΔP ,w=s/2 =
s

4
. (12)

Thus, the peak height of a sequence detector can exceed the peak height of the
inverse sequence detector by no more than 25 percent.

Maximal Delay Range. Now we maximize the range of valid delays Δ ∈
[Δmin;Δmax] for which a sequence detector can be above threshold, while its
inverse counterpart remains well below threshold. For fixed threshold Θ and
noise parameter η we require

Pα,β(Δ) > Θ (13)
Pβ,α(Δ) < Θ − η (14)

for 0 ≤ η < Θ/5 and all Δ ∈ [Δmin;Δmax]. A positive η guarantees that the in-
verse SD remains below threshold even if primed by noise or previous activation.
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Obviously, we have to require 0 < w < s < Θ − η ≤ Θ < w + s. Thus, the
first peak of the inverse detector is already below threshold, and it is sufficient
to require

s + w · e−Δ/τ > Θ ⇔ Δ < Δmax := τ · ln w

Θ − s
(15)

w + s · e−Δ/τ < Θ − η ⇔ Δ > Δmin := τ · ln s

Θ − η − w
. (16)

Note that Δmin → ΔP for s → Θ−η. We have to require that the interval length

dΔ := Δmax − Δmin = τ · ln w · (Θ − η − w)
s · (Θ − s)

. (17)

is positive, w · (Θ − η − w) > s · (Θ − s). For s > w this is equivalent to

s > h(w) :=
Θ +

√
Θ2 − 4w · (Θ − η − w)

2
. (18)

Note that Δmin may be quite large, e.g. larger than τ . Thus we may want to
impose an upper bound on Δmin. For q > 0 we require

Δmin

τ
≤ q ⇔ s ≤ eq · (Θ − η − w). (19)

Now we can maximize the interval length dΔ with respect to the input strengths
w and s. Since ln(x) is monotonically increasing, it is sufficient to maximize its
argument in eq. 17, i.e., the function

f(w, s) :=
w · (Θ − η − w)

s · (Θ − s)
for (w, s) ∈ (20)

R := {(w, s) : 0 < w < h(w) < s < min(Θ − η, eq · (Θ − η − w))}. (21)

The partial derivatives of f are

∂f

∂w
=

Θ − η − 2w

s · (Θ − s)
(22)

∂f

∂s
=

w · (Θ − η − w) · (2s − Θ)
s2 · (Θ − s)2

(23)

From eq. 22 we get ∂f/∂w = 0 only for w = w0 := (Θ−η)/2. Since ∂f/∂2w < 0,
for any fixed s < Θ we obtain maximal f(w) at w = w0. On the other hand,
since ∂f/∂s > 0 for (w, s) ∈ R we have to choose s as large as possible. The
situation is illustrated in Fig. 2.

As long as Q1 lies on the right side of X, or equivalently,

q ≥ q2 := ln 2 ≈ 0.7, (24)
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Fig. 2. The valid range R (see eq. 21) for weak and strong input strengths (w, s) cor-
responds to the double hatched region (Q1, Q2, H3). Without the constraint eq. 19
on Δmin (i.e., q → ∞) R expands to the single hatched region (H1, H2, H3). If addi-
tionally η → 0 (i.e., no noise) R expands to the triangle (D1, D2, D3). Outside R the
SD does not work properly. Optimal w, s are in point X or Q1 (see text). Coordi-
nates (w,s) are X((Θ − η)/2, Θ − η), D1(Θ/2, Θ/2), D2(Θ − η, Θ − η), D3(η, Θ − η),

H1((Θ − η)/2, (Θ +
√

2Θη − η2)/2), H2/3((Θ − η ±
√

Θ2 − 6Θη + 5η2)/2, Θ − η),
Q1((Θ−η)·(1−e−q), Θ−η), Q2((Θ−η−e−qΘ)/(1−e−2q), (Θ−e−q(Θ−η))/(1−e−2q))

the optimal choice will be in X, i.e., s = Θ − η and w = s/2. For smaller q with
Q1 still being on the right side of H3(η,Θ − η), or equivalently,

q2 > q ≥ q1 := − ln
(

1
2

+
√

1
4
− η

Θ − η

)
(25)

≥ − ln(1 − η

Θ − η
) ≥ η

Θ − η
, ′ =′ for η → 0. (26)

the optimum must lie somewhere on s = eq · (Θ − η − w). Thus we have to
maximize fq(w) := f(w, eq · (Θ − η − w)). We have

fq(w) :=
e−q · w

Θ − eq · (Θ − η − w)
, (27)

f ′
q(w) =

e−q · (Θ − eq · (Θ − η))
(Θ − eq · (Θ − η − w))2

. (28)

Note that f ′
q(w) cannot change its sign since the counter is independent of w and

the denominator is (Θ− s)2 > 0. Also, the counter of f ′
q cannot become zero for

any considered q, since from Θ = eq · (Θ − η) it follows q = − ln(1 − η/Θ) ≤ q1.
Thus, f ′

q(w) ≤ 0 for all considered w and q. Thus, the optimum is in Q1.
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Maximal Peak Height. Finally we maximize the peak height Pα,β of the
critical SD under the constraint (w, s) ∈ R (see eqs. 7,21). Since Pα,β is maximal
for minimal Δ it is sufficient to maximize

P (w, s) := Pα,β |Δ=Δmin = s +
w · (Θ − η − w)

s
(29)

with respect to w and s for (w, s) ∈ R (see Fig. 2). The partial derivatives are

∂P

∂w
=

Θ − η − 2w

s
, (30)

∂P

∂s
= 1 − w(Θ − η − w)

s
. (31)

Thus, for fixed s we obtain maximal P for w0 = (Θ−η)/2, and P decreases for w
smaller or larger than w0. Further, ∂P/∂s = 0 for s = s0 =

√
w(Θ − η − w), and

P increases for s smaller or larger than s0. Since s0(w) is maximal for w = w0 we
have s0 ≤ (Θ − η)/2 and thus (w, s0) �∈ R. Thus, for fixed w we have to choose
s as large as possible. Together, the maximum of P occurs in point X of Fig. 2
if X ∈ R. If X �∈ R the maximum must be somewhere on s = eq · (Θ − η − w).
Inserting the equivalent expression w = Θ − η − s · e−q into eq. 29 we then have
to maximize

Pq(s) := P (Θ − η − s · e−q, s) = s(1 − e−2q) + e−q(Θ − η). (32)

Since Pq(s) increases with s we have to choose s as large as possible. Thus
the maximum occurs in point Q1 of Fig. 2. In summary, both maximal P and
maximal dΔ are obtained for the same values of input strengths w and s. The
maxima are in Q1 for q1 < q < q2 and in X for q > q2 = ln 2.

Examples. Assume threshold Θ = 1, noise parameter η = 0.1, and a decay
time constant τ = 2 sec for the word web input activity. Correspondingly, we
find q1 ≈ 0.136 and q2 ≈ 0.693. We want to find input strengths w and s such
that the delay interval length dΔ, the peak height Pα,β , and the peak difference
dP are all maximal.

If we do not constrain the minimal word web delay (q > q2) we can choose
point X in Fig. 2, i.e., s = 0.9 and w = 0.45. We obtain a minimal word web
delay Δmin ≈ 1.39 sec, a maximal delay Δmax ≈ 3 sec, and thus a maximal delay
range of dΔ ≈ 1.61 sec. For optimal delay ΔP ≈ 1.39 sec we obtain a maximal
critical peak height Pα,β = 1.125 (versus Pβ,α = 0.9), and the maximal possible
peak difference dP = s/4 = 0.225.

However, a minimal word delays Δmin ≈ 1.39 sec may be too large for pro-
cessing of word sequences. Let us require Δmin ≤ 0.5 sec which corresponds
to q = 0.5 sec /τ = 0.25. Since q1 < q < q2 the maxima can be found in
Q1. Thus we choose w ≈ 0.199 and s = 0.9. We obtain Δmin = 0.5 sec, but
only Δmax ≈ 1.37 sec, and thus maximal dΔ ≈ 0.877 sec. For optimal delay
ΔP = 0.5 sec we obtain maximal Pα,β ≈ 1.06 (versus Pβ,α = 0.9), but a peak
difference of only dP ≈ 0.16 < s/4.

For word web delays Δ < q1 · τ ≈ 0.272 sec the SD will not be able to work
appropriately at all.
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Summary so far. We have analysed the linear SD model with exponentially
decaying word web activity [6] with respect to the maximal peak difference dP

between critical and inverse SD (eqs. 11,12), the maximal above-threshold peak
height Pα,β of the critical SD (eq. 29), and the maximal interval length dΔ

(eq. 17) of valid word web delays Δ ∈ [Δmin;Δmax].
We have found parameters where the model works quite well (see Fig. 2).

However, the above examples and the previous analysis reveal some limitations
of the original model: The peak difference dP is limited to at most 25 per-
cent of the inverse SD’s peak height, and dP can be even much smaller for
non-optimal word web delay Δ �= ΔP . Another problem is the limited range
of valid word web delays for plausible values τ of the decay constant of word
web activity. The examples reveal that Δmin and dΔ are too small for process-
ing complex sentences where delays Δ between key words (e.g., subject noun
and predicate verb) may vary between some hundred milliseconds and many
seconds. We will discuss possible solutions to these problems in the following
section.

2.2 Perspectives on Improving the Linear SD Model

The analysis of the previous section reveals some limitations of the simple linear
SD model: It is not very robust because the maximal peak or amplitude differ-
ence between critical and inverse SD cannot exceed 25 percent (eq. 12), and for
reasonable noise parameter η there can be severe limitations on minimal and
maximal possible word web delays Δmin and Δmax.

One particularity of the model is the assumption that the word web activ-
ity decays exponentially with exp(−t), based on some experimental findings of
sustained neural activity related to working memory [11]. It is possible to re-
lieve the restrictions on Δ considerably by using alternative decay functions
k(t), for example such that k(t) < exp(−t) for small t, but k(t) > exp(−t)
for larger t (see [12]). However, it is easy to show that the 25 percent limita-
tion on the maximal amplitude difference holds for any linear summative SD
model.

A possible solution would be a non-linear multiplicative SD model, perhaps
based on NMDA receptor mediated currents [13]. In such a model, the “weak” in-
put fibres would make synapses predominantly endowed with NMDA receptors,
and the “strong” input fibre synapses would be endowed predominantly with
AMPA receptors. Since NMDA currents decay much slower than AMPA cur-
rents (typically τNMDA = 150msec versus τAMPA = 5msec) and because NMDA
receptors mediate excitation only when the neuron is already excited (by AMPA
input) the SD unit would be activated strongly only if it first receives NMDA
and secondly AMPA input (cf. [13, 14]).

We will not explain this possibility here for space constraints, but a more
detailed description of the improved model variants will be given in a forthcoming
paper [12]. In the following we will discuss further biologically more realistic
network variants of the simple linear SD model with exponential word web decay
that can most easily be implemented and analyzed.



SD Networks and Associative Learning of Grammatical Categories 39

2.3 “Leaky-Integrate” SD Model

In the linear model variant of sequence detection discussed above, the SD’s
postsynaptic activity state at time t was considered to be influenced only by the
activity state of its presynaptic neural units at the same time t. This is a simpli-
fication, because postsynaptic activation is known to be the cumulative result of
inputs that arrived during a longer past and that, like the presynaptic activity
itself, decay over time (e.g., see [15]).The temporal decay of the postsynaptic
potential x can be described with a so-called “leaky-integrator” time constant
τx. To make our linear model of sequence detection more realistic neurobiologi-
cally, we introduce leaky integration and therefore rewrite eqs. 3,4 as differential
equations

τx · d

dt
xα,β(t) = −xα,β(t) + w · yα(t) + s · yβ(t), (33)

τx · d

dt
xβ,α(t) = −xβ,α(t) + s · yα(t) + w · yβ(t), (34)

where yα(t) = exp(−t/τ) ·H(t) and yβ(t) = exp(−(t−Δ)/τ) ·H(t−Δ). We can
find solutions separately for the time intervals t ∈ [0;Δ) and t ∈ [Δ;∞) by first
solving the simpler differential equation

τx · dx

dt
= −x + c · e−t/τ (35)

with initial value x(0) = ν. With eq. 59, the solution of eq. 35 is

x(t) = ν · e−t/τx +
c

1 − τx/τ
· ατ,τx

(t), (36)

where ατ,τx
(t) := exp(−t/τ) − exp(−t/τx) (see appendix A.1). With eqs. 52,53

we can determine the maximum

tmax(c, ν) =
τ · τx

τ − τx
· ln

(
ν

c
+

τ

τx
· (1 − ν

c
)
)

(37)

xmax(c, ν) =
c

1 − τx

τ

·
(

ν

c
+

τ

τx
· (1 − ν

c
)
)− τx

τ−τx

−
(

c

1 − τx

τ

− ν

)
·
(

ν

c
+

τ

τx
· (1 − ν

c
)
)− τ

τ−τx

(38)

Now we can solve the original differential eqs. 33,34 for xα,β and xβ,α. For xα,β(t),
t ∈ [0;Δ] we can apply eq. 36 using c = w and initial value ν = xα,β(0) = 0. For
t ∈ [0;Δ] we use c = s + w · e−Δ/τ and ν = xα,β(Δ) = w · ατ,τx

(Δ)/(1 − τx/τ).
This and a similar procedure for the inverse detector’s potential xβ,α finally
yields

xα,β(t) =
1

1 − τx

τ

·
{

w · α(t) ,0 ≤ t ≤ Δ

w · α(Δ) · e− t−Δ
τx + (s + we−

Δ
τ ) · α(t − Δ),t ≥ Δ

(39)

xβ,α(t) =
1

1 − τx

τ

·
{

s · α(t) ,0 ≤ t ≤ Δ

s · α(Δ) · e− t−Δ
τx + (w + se−

Δ
τ ) · α(t − Δ),t ≥ Δ

(40)
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Fig. 3. Membrane potential of the critical SD (left) and the inverse SD (right) for
the “leaky-integrate” model as computed from eqs. 39,40 (black line). Word webs are
activated at tA = 10 and tB = 20. Parameters are τWW = 10, τWW = 10, w = 0.5,
s = 1. The thin gray line represents the response of the original non-leaky model
(cf. Fig. 1). Also shown are simulation results (thick gray line) and the peak maxima
(crosses) as computed from eqs. 41,42

where for brevity we write α(t) instead of ατ,τx
(t). The peak amplitude of the

critical SD is the peak of the “second” alpha function and can therefore be
obtained from eq. 38 by substituting ν = w·α(Δ)/(1−τx/τ) and c = s+w·e−Δ/τ ,
while the peak amplitude of the inverse SD is the peak of either the first or the
second alpha function,

Pα,β = xmax(s + w · e−Δ/τ ,
w · α(Δ)
1 − τx/τ

), (41)

Pβ,α = max
(

xmax(s, 0), xmax(w + s · e−Δ/τ ,
s · α(Δ)
1 − τx/τ

)
)

. (42)

Fig. 3 illustrates and verifies the shown formulas eqs. 39-42. The potential
of the leaky-integrate SDs is essentially a smoothed version of the original SDs’
potential (cf. Fig. 1).

Numerical simulations as shown in Fig. 4 suggest the following preliminary
results: (1) The maximal amplitude difference occurs for an inter-stimulus delay
Δ ≈ ΔP such that the two peaks of the inverse SD have similar height. It
appears that ΔP increases monotonically with τx, in particular, ΔP ≥ ln 2 ≈ 0.7
for τx > 0. This implies that in biologically more realistic models the minimal
word web delay Δmin will be even larger than discussed in section 2.1. (2) For
Δ ≈ ΔP the maximal amplitude difference occurs also for s = 2w, the same
as for the original SD model. For Δ �= ΔP the optimum occurs at s �= 2w.
The maximal amplitude difference is < 25 percent, slightly smaller than for the
original model. However, the loss appears to be small (only a few percent) for
reasonable parameters.

In the following simulations we will use τ 
 τx, for example, τ = 100 and
τx = 1. In this case the behavior of a single SD is still very similar to the original
model (see appendix A.1, Fig. 8).
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Fig. 4. Left: Peak height of the critical (Pα,β) and inverse SD (Pβ,α, solid line; the
dashed lines correspond to the smaller one of the two activity peaks, cf. eq. 42) and
their relative difference as functions of stimulus delay Δ for otherwise same parameters
as in Fig. 3. The optimum for relative peak difference occurs for larger ΔP ≈ 10 than
for the non-leaky model (ΔP = ln 2 · τ ≈ 7) which implies also higher Δmin for the
leaky model. Note that Δ is near the optimum at the discontinuity, i.e., when the
first and second peak of the inverse detector have nearly equal height. Right: Relative
peak difference as a function of s/w for optimal Δ = ΔP ≈ 10 (solid) compared to
Δ = 5 and Δ = 20 (dashed), and otherwise same parameters as for the left panel. For
Δ = ΔP , the optimum still occurs for s = 2w but is (slightly) below the 25 percent
bound. For Δ smaller (larger) than ΔP , the optimum occurs for s/w larger (smaller)
than 2

2.4 Assembly SD Model

So far we have analyzed only a single SD unit. As we will see in the next section,
learning and generalization of grammatical rules and categories can be accom-
plished if several related single SD units group into a functional unit called an
assembly SD. Figure 5 illustrates an assembly SD consisting of n = 5 individ-
ual SD units which are connected with each other and receive strong and weak
inputs from two word webs α and β.

Fig. 5. An assembly SD consisting of k = 5 mutually connected individual SD units
receiving inputs from two word webs α and β
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Inanalogy to eq. 35 theassemblySDmodel consistingofnunits canbedescribed
by a system of n differential equations for the membrane potentials xi (i = 1, ..., n),

τx · dx
dt

= −x + Ax + b + c · e−t/τ , (43)

where bold lowercase letters denote vectors of dimension n and bold uppercase
letters represent n×n matrices. Vector b is constant input, and vector c describes
the strength of the exponentially decaying input from the word webs. A is the
synaptic weight matrix. For simplicity we assume Aij = a for i, j = 1, ..., n.
Further we assume initial values x(0) = ν = (ν1, ..., νn).

The system of differential equations is solved in appendix A.4. With the
eigenvalue λ := na − 1 and τλ := −τx/λ the unique solution is

xi(t) = (νi − ν̄) · e−t/τx + ν̄ · e−t/τλ

+ (bi − b̄) · (1 − e−t/τx) + b̄ · 1 − e−t/τλ

−λ

+ (ci − c̄) · e−t/τ − e−t/τx

1 − τx/τ
+ c̄ · e−t/τ − e−t/τλ

−λ − τx/τ
(44)

x̄(t) = ν̄ · e−t/τλ + b̄ · 1 − e−t/τλ

−λ
+ c̄ · e−t/τ − e−t/τλ

−λ − τx/τ
. (45)

for i = 1, ..., n and means ν̄ := (
∑n

i=1 νi)/n, b̄ := (
∑n

i=1 bi)/n, c̄ := (
∑n

i=1 ci)/n,
and x̄ := (

∑n
i=1 xi)/n. The system is stable for a negative eigenvalue λ = na −

1 < 0 and then converges with xi → bi − b̄ + b̄/ − λ for t → ∞.
Note that the solution for the mean potential x̄ (eq. 45) of the assembly SD

has the same form as the solution eq. 36 for an isolated leaky-integrate SD (set
b̄ = 0 and substitute ν = ν̄, c = c̄ · (1 − τx/τ)/(−λ − τx/τ) in eq. 36). Thus the
mean activity x̄ of an assembly SD receiving input w · yα(t) + s · yβ(t) behaves
exactly the same way as an individual leaky-integrate SD with time constant τx

′

and weak and strong inputs w′ and s′,

τx
′ := τλ, w′ :=

−λτ − 1
τ − τλ

· w̄, s′ :=
−λτ − 1
τ − τλ

· s̄, (46)

where yα, yβ are as in section 2.3 and w̄, s̄ are the mean component values of the
input strength vectors w, s. The most prominent effect of grouping elementary
SDs into an assembly will be a slower time course of the membrane potentials
during sequence processing since τ ′

x 
 τx for na → 1. This is because of the
strong internal connections within the assembly, which lead to full information
exchange between elementary SDs.

3 Associative Learning of Grammatical Categories

3.1 Network and Learning Model

Figure 6 illustrates our simple network model. It contains two neuron popula-
tions, population WW for word webs, and population SD for elementary sequence
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Fig. 6. Network model for learning grammatical categories. The Word Web population
WW projects onto the sequence detector layer SD via hetero-associative connections
H. Initially, the in-column connections from WW i to layer SD are strong (dark gray),
the in-row connections are weak (light gray), and all remaining connections are very
weak. Thus, SD ij is selective for word i followed by word j. Additionally, there are
initially very weak auto-associative recurrent connections A within population SD

detectors. Each neuron is modelled similar to the leaky-integrate units described
in section 2.3. For m word webs, population SD contains m2 units, one neuron
for each possible combination of word webs. Each word web makes two types
of forward connections onto related sequence detectors: (i) weak connections to
those SDs that detect the word web as first element, and (ii) strong connections
onto those SDs that detect the word web as second element. In addition there
are plastic recurrent connections between all pairs of SDs which are initially
weak and unspecific. One may describe our network as auto-associative memory
- the SD population or “layer” - connected in an hetero-associative fashion with
a layer for word webs (cf. [16, 17, 18]).

Each word web i is modelled as a simple leaky-integrate unit with the poten-
tial xWW,i obeying

dxWW,i

dt
= −1

τ
· xWW,i +

∑
k

δ(t − tik), (47)

where τ is the decay time constant of the word web’s sustained activity, δ(t) is
the Dirac impulse (δ(t) =“∞” for t = 0, and δ(t) = 0 for t �= 0), and tik is the
time of the k-th activation of WW i. Word web output yWW,i = xWW,i is simply
linear. Similarly, potential xSD,ij and output ySD,ij of sequence detector ij can
be described by
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τx · dxSD,ij

dt
= −xSD,ij +

∑
k

Hkij · yWW,k +
∑
k,l

aklij · ySD,kl, (48)

ySD,ij = max(0,min(Θ, xSD,ij)), (49)

where τx is the membrane time constant of the sequence detectors, Hkij repre-
sents the strength of the connection from WW k to SD ij, and Aklij represents
the strength of the connection from SD kl to SD ij. Initially, the “in-row” hetero-
associative synaptic strengths were “weak” with Hkkj = w, the “in-column”
hetero-associative connections were “strong” with Hkik = s for i �= k, the “di-
agonal” connections were “very strong” with Hkkk = s1, and all remaining con-
nections were “very weak” with Hkij = w1 for i, j �= k and Aklij = wA.

For synaptic learning we used a basic Hebbian coincidence rule with decay.
The weight ωij ∈ [0;ωmax] of the synapse between two neurons i and j follows
the differential equation

dωij

dt
= −d + fpre(yi) · fpost(yj) (50)

where d is the decay term, and fpre and fpost are positive sigmoid functions of
pre- and postsynaptic activities yi and yj , respectively.

The anatomical interpretation of our model is that different WWs are located
at different cortical sites, and that SD ij is located in the vicinity of WW j
[5, 6]. Therefore the short-range “in-column” connections from WW to SD are
“strong” and the remaining long-range connections are “weak” or “very weak”.
The “diagonal” SD ii can be interpreted as being part of word-related neuronal
assemblies (with similar properties as WW i).

3.2 Generalizing Sequences and Learning of Grammatical
Categories

What is the data set a learning mechanism for serial order in language can op-
erate on? A typical situation in language use is that very common word strings
are frequently being encountered and that one of the words in the string is oc-
casionally replaced by another one. If this happens repeatedly, it is possible to
define classes of string elements that are frequently being substituted with each
other, and these can be considered the basis of so-called lexical categories or
grammatical word classes. Think, for example of nouns such as boys, whales,
fish, lobsters and verbs such as swim, sleep, jump, talk etc. Each member of
one of these lexical or lexico-semantic categories can, in principle, co-occur with
any member of the respective other category. The child learns this, although in
real life it usually does not encounter all possible pairings. Some of the words
of one class co-occur with some members of the other class, and the resulting
word substitutions between strings are sufficient to generalise a rule that links
all members of class one to all members of class two. The basis of this learning
would be the substitution pattern of words between strings. The most elemen-
tary case where this putative auto-associative substitution learning [6] could be
explored is the case where word strings (1, 3), (1, 4), (2, 3) are being presented to
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a network and it is investigated whether, as a result of this learning, the network
would process the not encountered string that completes the substitution pat-
tern, namely (2, 4), in the same way as the learned word sequences (see [19, 6, 5]).
An example would be a child who encounters “boys swim”, “boys sleep”, “whales
swim” and generalises the acquired sequence knowledge to generate (or accept)
the new string “whales sleep”. The important question is whether a network
of the properties detailed so far in this paper would explain this substitution
learning at the neuronal level.

To control for the relevance of substitutions of string elements and to test
the specificity of the generalisation behavior of the network to those word webs
that were activated during string substitutions, we added a few items that only
occurred in one context. In the following we illustrate some simulations of our
model with m = 7 WWs and m2 = 49 SDs (see Fig. 7). The network develops in
three phases: (1) Training phase: Initially SD ij receives weak input from WW
i and strong input from WW j and only very weak input from other sources.
Thus SD ij responds strongly only to its critical sequence (i, j) as described in
section 2.3. When sequence (i, j) is presented then the three SDs ii, ij, and jj
respond strongly at the same time. For this the corresponding recurrent synapses
within layer SD get strengthened by Hebbian learning and therefore the corre-
sponding “triplet cliques” are established in the network. In our example of Fig. 7
we have presented the sequences (1, 3), (1, 4), (2, 3), and (5, 6). (2) Replay phase:

Fig. 7. SD network after training with sequences (1, 3), (1, 4), (2, 3), and (5, 6). Learn-
ing results in two discrete assemblies representing the productive rule {1, 2} → {3, 4}
and the associative learning of {5} → {6}, respectively. Thin gray edges indicate
the “weak” hetero-associative connections from WW to SD, thick gray edges indi-
cate “strong” connections. Black connections inside layer SD indicate auto-associative
connections constituting the cell assemblies made up of SDs. SD: sequence detector;
WW: word web
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While in phase 1 feed-forward connections are dominant, in the replay phase the
network dynamics are dominated by the recurrent connections within layer SD
while the same sequences from phase 1 are presented again for several times. The
resulting strengthening of recurrent connections gives rise to point attractors in
the state space which correspond to cell assemblies representing grammatical
rules. For example, the replay of sequence (1, 3) will activate a whole assembly
of seven SDs 13, 14, 23, 11, 22, 33, and 44. The result is that the connections
from WWs 1 and 3 to all seven SDs of the assembly get strengthened heteroas-
sociatively. Additionally also the autoassociative connections between the seven
SDs get strengthened. A neuronal assembly forms which is no longer selective
for one sequence of WW activations, but rather for a sequence of any member
of a set of WWs followed by the activation of any member of a second set. (3)
Testing phase: Finally, the network is brought back to a feed-forward dominated
regime. Due to the learned hetero-associative connections now the network is
capable of generalizing word sequences such as (2, 4) that never occurred before
but that are supported by the substitution pattern of sequence constituents.
Now the network can be said to represent two discrete “rules” {1, 2} → {3, 4}
and {5} → {6}, where the word sets {1, 2} and {3, 4} constitute two distinct
“grammatical categories”.

Our simulations demonstrate (a) that a variant of the sequence detector
model produces auto-associative substitution learning and generalises sequential
order information to new, never encountered strings, and (b) that this general-
isation is specific to those items that participated in substitutions. We submit
that the proposed mechanisms can be the basis of learning of both grammati-
cal categories and grammatical rules of syntactic serial order. It would be the
elementary sequence detectors strongly connected to each other that form these
abstract higher order Syntactic Neuronal Assemblies (SNAs).

4 Summary

In this work we have analysed different versions of linear summative sequence
detector models [5, 6] and their potential use in sequence generalisation and the
development of grammatical categories.

We have shown that a putative neural correlate of syntactical rules can be
learned by an auto-associative memory on the basis of the pattern of substitu-
tions observable in language use. String elements, which we call “words” here
for simplicity, can be classified according to the frequent contexts (preceding
and following neighbor words) in the string. We demonstrate here that an auto-
associative memory can learn discrete representations which can be considered
a neural equivalent of links between syntactic categories and can explain specific
syntactic generalization.

Clearly our current simulations (see Fig. 7) account only for very simple
grammatical rules and categories (such as noun and verb) where each word
can be subject to at most one rule such that the resulting cell assemblies have
no overlaps. If a word belonged to several different categories the resulting cell
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assemblies would overlap which leads to the requirement of appropriate threshold
control, for example by inhibitory interneurons [18, 20]. The application of our
model to real language data will be discussed in greater detail in a forthcoming
paper [21].
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A Mathematical Appendix

A.1 Properties of Alpha Functions

The difference ατ2,τ1(t) of two exponentials with time constants τ1 < τ2 is called
alpha function and has the following maximum αmax at t = tmax (see Fig. 8),

ατ2,τ1(t) := e−t/τ2 − e−t/τ1 (51)

ατ2,τ1
′(t) = 0 ⇔ t = tmax :=

τ1 · τ2

τ2 − τ1
· ln τ2

τ1
(52)

αmax := ατ2,τ1(tmax) =
(

τ2

τ1

)− τ1
τ2−τ1 −

(
τ2

τ1

)− τ2
τ2−τ1

. (53)

For brevity we will simply write α(t) in the following. We have α(0) = 0 and
α(t) → 0 for t → ∞, and a single maximum αmax occurs at tmax. With c := τ2/τ1

the maximum can be written as

tmax

τ1
=

c

c − 1
· ln c,

tmax

τ2
=

ln c

c − 1
, αmax = c−

1
c−1 − c−

c
c−1 . (54)

For c → 1 we have tmax → τ1 and αmax → 0. For c → ∞ we have tmax/τ1 → ∞,
tmax/τ2 → 0, and αmax → 1. Fig. 8(right) shows tmax/τ2 and 1 − αmax as
functions of c on a logarithmic scale.
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Fig. 8. Left: The alpha function ατ2,τ1(t) for τ2 = 10, τ1 = 10. A single maximum
αmax occurs at t = tmax. Right: tmax/τ2 (solid) and 1 − αmax (dashed) as functions of
c := τ2/τ1 on logarithmic scales (base 10)
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A.2 Linear Differential Equations

For analysing the “leaky-integrate” SD model it is necessary to solve the initial
value problem for a single linear inhomogenous differential equation of the type

ẋ = a · x + b. (55)

where a, b, and x are functions of t, and x(t0) = ν. Assume that h is the solution
for the corresponding homogenous problem ẋ = aẋ with h(t0) = 1. Then it
is easy to verify that the unique solution for the inhomogenous equation with
x(t0) = ν is

x(t) = ν · h(t) + h(t) ·
∫ t

t0

b(s)
h(s)

ds. (56)

For our purposes it will be necessary to solve the following differential equation,

ẋ = ax + b + c · edt. (57)

for constant a, b, c, and d. The solution of the corresponding homogenous equa-
tion is h(t) = eat. Thus the unique solution for the inhomogenous equation with
initial value x(0) = ν is

x(t) = ν · eat + eat ·
∫ t

t0

b + ceds

eas
ds (58)

= ν · eat − b

a
· (1 − eat) +

c

d − a
· (edt − eat). (59)

Note that eq. 59 contains an alpha function, edt − eat = α−1/d,−1/a(t).

A.3 Diagonalization and Systems of Differential Equations

Differential equation systems of the type ẋ = Ax can be solved most easily if A
is a diagonal n × n matrix. Then each equation can be solved independently of
the others, e.g., using eq. 59. If A is not diagonal we can still try to diagonalise
A by finding an appropriate linear coordinate transform z := C−1 · x for an
invertible matrix C such that D = C−1 · A · C is diagonal. Then it is easy to
solve the equivalent system in z-coordinates, ż = Dz. Finally, the solution in x-
coordinates can be obtained by the inverse transform x := C · z. Unfortunately,
it is not possible to diagonalise any matrix A. (Anyhow, it is always possible to
find the so-called Jordan matrix of A where only two) diagonals are non-zero.)

If A has a simple form we can try to apply combined row and column trans-
formations on A in order to eliminate non-diagonal matrix components. Row and
column transformations can be described using Kronecker’s symbol δij , where
δij = 1 for i = j and 0 otherwise. We define

δ(k,l) := ((δik · δjl)ij)n×n (60)
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as the matrix where all components are zero except a single one-entry at row k,
column l. Verify that δ(k,l) ·A is the n× n-matrix which at line k has a copy of
the l-th line of A and is 0 otherwise. Similarly, A · δ(k,l) is the matrix which at
column l has a copy of the k-th column of A. With the unity matrix I we can
do the following rows or columns operations on matrix A,

– (I + c · δ(k,l)) · A adds c times the l-th row to the k-th row.
– A · (I + c · δ(k,l)) adds c times the k-th column to the l-th column.

Further verify that

(I + c · δ(k,l))−1 = I − c · δ(k,l) (61)

Before solving the assembly SD system eq. 43 (see appendix A.4) we now diag-
onalise the n × n matrix

Ah := (A − I)/τx =
1
τx

·

⎛
⎜⎜⎜⎜⎜⎝

a − 1 a · · · a a
a a − 1 · · · a a
...

...
. . .

...
...

a a · · · a − 1 a
a a · · · a a − 1

⎞
⎟⎟⎟⎟⎟⎠ . (62)

where A, τx, and a are as in section 2.4. We have to find C such that D = C−1 ·
Ah · C is diagonal. This can be achieved by applying adequate row operations
on A. However, note that whenever we add row i to row j, at the same time we
have to add column j to row i, and vice versa. First we subtract the n-th row
from rows 1, 2, ..., n − 1 which yields

C1 · Ah =
1
τx

·

⎛
⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 1
0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1
a a · · · a a − 1

⎞
⎟⎟⎟⎟⎟⎠ , for C1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ , (63)

where C1 :=
∏1

i=n−1(I − δ(i,n)) = (I − δ(n−1,n)) · (I − δ(n−2,n)) · ... · (I − δ(1,n))
corresponds to the row operations. Since on the left and right side of Ah there
must be inverse matrices we have also to apply the corresponding column trans-
formations, i.e., we add the 1,2,...,n − 1-th column to the n-th column. With
C1

−1 :=
∏n−1

i=1 (I + δ(i,n)) we obtain

C1AhC1
−1 =

1
τx

⎛
⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
a a · · · a na − 1

⎞
⎟⎟⎟⎟⎟⎠ for C1

−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ .(64)

Secondly, we can add c times the 1, 2, ..., n − 1-th row to the n-th row, and
subsequently −c times the n-th column to the 1,2,...,n − 1-th column. In order
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to eliminate the non-diagonal elements of row n we have to choose c such that
a − c − c(na − 1) = 0. This is true for a factor c = 1/n. Thus with C2 :=∏1

i=n−1 I + 1
n · δ(n,i) and C2

−1 :=
∏n−1

i=1 I − 1
n · δ(n,i) we have

C2 =
1
n
·

⎛
⎜⎜⎜⎜⎜⎝

n 0 · · · 0 0
0 n · · · 0 0
...

...
. . .

...
...

0 0 · · · n 0
1 1 · · · 1 n

⎞
⎟⎟⎟⎟⎟⎠ , C2

−1 =
1
n
·

⎛
⎜⎜⎜⎜⎜⎝

n 0 · · · 0 0
0 n · · · 0 0
...

...
. . .

...
...

0 0 · · · n 0
−1 −1 · · · −1 n

⎞
⎟⎟⎟⎟⎟⎠ . (65)

With C−1 := C2 · C1 and C := C1
−1 · C2

−1 we finally obtain

C−1 =
1
n
·

⎛
⎜⎜⎜⎜⎜⎝

n 0 · · · 0 −n
0 n · · · 0 −n
...

...
. . .

...
...

0 0 · · · n −n
1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎠ , C =

1
n
·

⎛
⎜⎜⎜⎜⎜⎝

n − 1 −1 · · · −1 n
−1 n − 1 · · · −1 n
...

...
. . .

...
...

−1 −1 · · · n − 1 n
−1 −1 · · · −1 n

⎞
⎟⎟⎟⎟⎟⎠ , (66)

D = C−1 · Ah · C =
1
τx

·

⎛
⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 na − 1

⎞
⎟⎟⎟⎟⎟⎠ . (67)

A.4 Solution of the Assembly SD System

The assembly SD system eq. 43 in section 2.4 can equivalently be written as

dx
dt

= Ah · x + u + v · ep·t, (68)

with u := b/τx, v := c/τx, p := −1/τ , and Ah as in eq. 62. The solution
becomes easy if we diagonalise Ah, i.e. if we have an invertible matrix C such
that D = C−1 ·Ah ·C is diagonal (see appendix A.3). With the linear coordinate
transform z := C−1 · x we have to solve the equivalent system in z-coordinates,

dz
dt

= C−1 · Ah · C · z + C−1 · (u + v · ep·t), (69)

where the coordinate transform matrices C, C−1 and diagonal matrix D :=
C−1 ·Ah ·C are given by eqs. 66-67. Thus, it is sufficient to solve the independent
equations

żi = qzi + (ui − un) + (vi − vn) · ept, i = 1, ..., n − 1 (70)
żn = rzn + ū + v̄ · ept (71)

with q := −1/τx, r := (na− 1)/τx, ū = (
∑n

j=1 ui)/n, and v̄ = (
∑n

j=1 vi)/n. The
initial values for z are

z(0) = C−1 · ν = (ν1 − νn, · · · , νn−1 − νn, ν̄)T (72)
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With eq. 59 in appendix A.2 we obtain for each equation a unique solution,

zi(t) = (νi − νn) · eqt − ui − un

q
· (1 − eqt) +

vi − vn

p − q
· (ept − eqt), (73)

zn(t) = ν̄ · ert − ū

r
· (1 − ert) +

v̄

p − r
· (ept − ert), (74)

for i = 1, ..., n − 1. Transforming back with x = C · z yields the unique solution
in x-coordinates,

xi(t) = νi · eqt + ν̄ · (ert − eqt)

− ui

q
· (1 − eqt) − ū ·

(
1 − ert

r
− 1 − eqt

q

)

+
vi

p − q
· (ept − eqt) + v̄ ·

(
ept − ert

p − r
− ept − eqt

p − q

)
(75)

for i = 1, ..., n. Resubstituting the original symbols yields finally the unique
solution eq. 44.

B List of Symbols and Abbreviations

WW word web
SD sequence detector
SNA syntactic neuronal assembly
t time
H(t) Heaviside function, see text following eq. 2
ατ2,τ1(t) or α(t) alpha function with time constants τ1 and τ2, see eq. 52
δ(t) Dirac impulse function, see text following eq. 47
A,B, also 1,2,3,... word symbols or word numbers
(A, B), AB, also 12,23,... word sequences
α, β symbols for WWs representing A and B, respectively
(α, β) or αβ critical SD representing the word sequence A → B
(β, α) or βα inverse SD representing the word sequence B → A
yα, yβ output activity of WWs α and β, respectively
xα,β , xβ,α membrane potentials of SDs (α, β) and (β, α)
yα,β , yβ,α output activity of SDs (α, β) and (β, α)
w, s weak and strong strength of input from WWs to SDs
Θ SD threshold
η noise parameter of SD, see eq. 14
τ decay time constant for WW activity
τx decay time constant of a leaky-integrate SD’s potential
τλ time constant for assembly SD system
λ eigenvalue of assembly SD system
Pα,β , Pβ,α peak potential of critical and inverse SD, respectively
dP peak difference Pα,β − Pβ,α

Δ delay between first and second word in a word sequence
ΔP delay Δ such that inverse SD’s peaks have equal height
Δmin, Δmax minimal/maximal Δ such that the SD works appropriately
dΔ interval length Δmax − Δmin of valid delays
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h(w) constraint eq. 18 equivalent to dΔ > 0 (cf. Fig. 2)
q constraint eq. 19 on minimal word web delay Δmin

q1, q2 limiting constants for q defined in eqs. 25,24
R set of valid tuples (w, s) (see eq. 21)
n assembly size
m number of WWs
H hetero-associative connections from layer WW to layer SD
A, a auto-associative recurrent connections within layer SD
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Abstract. Although biomimetic autonomous robotics relies on the mas-
sively parallel architecture of the brain, a key issue for designers is to tem-
porally organize behaviour. The distributed representation of the sensory
information has to be coherently processed to generate relevant actions.
In the visuomotor domain, we propose here a model of visual exploration
of a scene by the means of localized computations in neural populations
whose architecture allows the emergence of a coherent behaviour of se-
quential scanning of salient stimuli. It has been implemented on a real
robotic platform exploring a moving and noisy scene including several
identical targets.

1 Introduction

The brain, in both humans and animals, is classically presented as a widely dis-
tributed and massively parallel architecture dedicated to information processing
whose activity is centered around both perception and action. One the one hand,
it includes multiple sensory poles able to integrate the huge sensory information
through multiple pathways in order to offer the brain a coherent and highly
integrated view of the world. On the other hand, it also includes several motor
poles able to coordinate the whole range of body effectors, from head to toes or
from muscles of the neck to muscles of the last knuckle of the left little toe.

Despite this huge amount of information to be processed, we are able to play
the piano (at least some of us) with both left and right hand while reading the
partition, tapping the rhythm with our feet, listening to the flute accompanying
us and possibly singing the theme song. Most evidently, the brain is a well
organized structure able to easily perform those kind of parallel performances.

Nonetheless, real brain performance does not lie in the parallel execution of
some uncorrelated motor programs, hoping they could ultimately express some
useful behaviour. Any motor program is generally linked to other motor programs
through perception because we, as a body, are an indivisible entity where any
action draws consequence on the whole body. If I’m walking in the street and
suddenly decide to turn my head, then I will have to adapt my walking program
in order to compensate for the subtle change in the shape of my body. In other
words, the apparent parallelism of our actions is quite an illusion and requires de
facto a high degree of coordination of motor programs. But even more striking
is the required serialization for every action like for example grasping an object:

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 54–72, 2005.
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I cannot pretend to grasp the orange standing ahead of me without first walking
to the table where it is currently lying.

This is quite paradoxical: behaviour is carried out by a massive parallel struc-
ture whose goal is finally to coordinate and serialize several elementary action
programs. This is the key issue about the kind of performances that are presently
identified as the most challenging in biomimetic robotics. The goal of this domain
is to develop new computational models, inspired from brain functioning and to
embed them in robots to endow them with strong capacities in perception, action
and reasoning. The goal is to exploit the robot as a validation platform of brain
models, but also to adapt it to natural interactions with humans, for example
for helping disabled persons. These strategic orientations have been chosen, for
example, in the Mirrorbot european project, gathering teams from neurosciences
and computer science. Peoplebot robotic platforms are instructed, via a biolog-
ically oriented architecture, to localize objects in a room, reach them and grasp
them. Fruits have been chosen to enable simple language oriented instructions
using color, shape and size hints.

To build such technological platforms, fundamental research must be done,
particularly in computational neurosciences. The most important topic is cer-
tainly that of multimodal integration. Various perceptual flows are received by
sensors, preprocessed and sent to associative areas where they are merged in an
internal representation. The principle of internal representation is fundamental
in this neuronal approach. The robot learns by experience to extract in each per-
ceptual modality the most discriminant features together with the conditional
probabilities in the multimodal domain of occurrence of these features, one with
regard to the other, possibly in a different modality.

In a natural environment, features have to be extracted in very numerous
dimensions like for example, in the visual domain, motion, shape, color, texture,
etc. Multimodal learning will result in a high number of scattered representa-
tions. As an illustration, one can think of learning the consequences of eye or
body movement on the position of an item in the visual scene, learning the
correlations between some classes of words (e.g. colors, objects) and some visual
modalities (e.g. color, shape), learning to merge the proprioception of one’s hand
and its visual representation to anticipate key events in a grasping task, etc. It
is clear that in autonomous robotics, all these abilities in the perceptual, multi-
modal and sensorimotor domains are fundamental prerequisite and, accordingly,
a large amount of modeling work has been devoted to them in the past and are
still developed today.

In this paper, we wish to lay emphasis on another important aspect, presently
emerging in our domain. Nowadays, tasks to be performed by the robot are in-
creasingly complex and are no longer purely associative tasks. As an illustration,
in the Mirrorbot project, we are interested in giving language instructions to the
robot like “grasp the red apple”. Then, the robot has to observe its environment,
select red targets, differentiate the apple, move toward it and end by grasping it.
To tell it more technically, one thing is to have at disposal elementary behaviors,
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another more complicated thing is to know when to trigger the most appropriate
and inhibit the others, particularly in a real world including many distractors.

In the framework of brain understanding and multimodal application, we
investigated further the nature of the numerical computations required to im-
plement a selective attention mechanism that would be robust against both noise
and distractors. This kind of mechanism is an essential part of any robotic sys-
tem since it allows to recruit available computational power on a restricted area
of the perception space, allowing further processing on the interesting stimuli.
The resulting model we introduce in this paper is a widely distributed architec-
ture able to focus on a visual stimulus in the presence of a high level of noise
or distractors. Furthermore, its parallel and competitive nature gives us some
precious hints concerning the paradox of brain, behaviour and machine.

2 The Critical Role of Attention in Behaviour

Despite the massively parallel architecture of the brain, it appears that its pro-
cessing capacities are limited in several domains: sensory discrimination, mo-
tor learning, working memory, etc. Several neuropsychological experiments have
pinpointed this limitation. In the visual perception domain, the fundamental
experiment by Treisman and Gelade [1] has drawn the distinction between two
modes of visual search: when an object has characteristics sufficiently different
from its background or other objects, it litterally ”pops-out” from the scene and
the search for it is very quick and independent from the number of other ob-
jects; oppositely, when this object shares some features with distracting objects
or when it does not differ enough from its background, the search is very diffi-
cult and the time needed for it increases linearly in average with the number of
distractors. These two search behaviours are then respectively called ”parallel
search” and ”serial search”. In the MirrorBot scenario, the parallel search could
be useful when the robot has to find an orange among other non-orange fruits:
the ”orange-color” feature is sufficient for the robot to find its target. On the
contrary, if one asks the robot to find a small green lemon among big green
apples and small yellow lemons, the ”green-colour” and ”small size” features
are not sufficient by themselves to dicriminate the green lemon: a conjunction
of the two features is needed to perform the task. With respect to the results
of Treisman and Gelade, the search would have to be serial, which means that
the small and/or green objects have to be scanned sequentially until the green
lemon is found.

Why such a limitation in the brain? Ungerleider and Mishkin [2] described
the organization of the visual cortex as being composed of two major pathways:
the ventral pathway (labelled as the ”what” pathway because of its involvement
in visual recognition) and the dorsal pathway (labelled as the ”where” or ”how”
pathway because of its involvement in spatial representation and visuomotor
transformation). Areas in the ventral pathway (composed by areas from V1 to
V2 to V4 to TEO to TE) are specific for certain visual attributes with increasing
receptive fields along this pathway: from 0.2◦ in V1 to 25◦ in TE. The complex-
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ity of the visual attributes encoded in these areas also increases throughout
this pathway: V1 encodes simple features like orientation or luminance in a on-
center off-surround fashion, V4 mainly encodes colour and inferotemporal areas
(IT, comprising TEO and TE) respond to complex shapes and features. This
description corresponds to a feed-forward hierarchical structure of the ventral
pathway where low-level areas encode local specific features and high-level areas
encode complex objects in a distributed and non-spatial manner. This approach
raises several problems: although it is computationally interesting for working
memory or language purposes to have a non-spatial representation of a visual
object, what happens to this representation when several identical objects are
present at the same time in the scene? As this high-level representation in IT is
supposed to be highly distributed to avoid the ”grandmother neuron” issue [3],
how can the representation of several different objects be coherent and under-
standable by prefrontal cortex (for example)? Moreover, the loss of the spatial
information is a problem when the recognition of a given object has to evoke
a motor response, e.g. an ocular saccade. The ventral stream can only detect
the presence of a given object, not its position, what would instead be the role
of the dorsal pathway (or occipito-parietal pathway). How is the coherence be-
tween these two pathways ensured? These problems are known as the ”binding
problem”. Reynolds and Desimone [4] state that attention is a key mechanism
to solve that problem.

Visual attention can be seen as a mechanism enhancing the processing of
interesting (understood as behaviourally relevant) locations and darkening the
rest [5, 6]. The first neural correlate of that phenomenon has been discovered by
Moran and Desimone [7] in V4 where neurons respond preferentially to a given
feature in their receptive field. When a preferred and a non-preferred stimulus
for a neuron are presented at the same time in its receptive field, the response
becomes an average between the strong response to the preferred feature and the
weak response to the non-preferred one. But when one of the two stimulus is at-
tended, the response of the neuron represents the attended stimulus alone (strong
or poor), as if the non-attended were ignored. The same kind of modulation of
neural responses by attention has been found in each map of the ventral stream
but also in the dorsal stream (area MT encoding for stimulus movement, LIP
representing stimuli in a head-centered reference frame). All these findings are
consistent with the ”biased competition hypothesis” [8] which states that visual
objects compete for neural representation under top-down modulation. This top-
down modulation, perhaps via feedback connections, increases the importance
of the desired features in the competition inside a map, but also between maps,
to lead to a coherent representation of the target throughout the visual cortex.
Importantly, when a subject is asked to search for a colored target before its ap-
pearance, sustained elevation of the baseline activity of color-sensitive neurons
in V4 has been noticed, although the target had not appeared yet [9].

Another question is the origin of attention, which can be viewed as a supra-
modal cognitive mechanism, independent from perception and action [10], or
on the contrary as a consequence of the activation of circuits mediating sen-
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sorimotor transformations. This ”premotor theory of attention” [11, 12] implies
that covert attention (attention to extra-foveal stimuli) is the preparation of
a motor action to this stimulus, but finally inhibited. Several studies support
that theory, especially in [13, 14, 15], showing that covert attention engage the
same structures than overt orienting. These structures comprise the frontal eye
field (FEF), the superior colliculus, the pulvinar nuclei of the thalamus, LIP
(also called parietal eye field) among others. FEF appears as the main source
of modulation of area LIP because of their anatomical reciprocal connections: a
sub-threshold modulation of FEF increases the discrimination of a target [16],
and although LIP encodes the position of visual stimuli in head-centered coor-
dinates, this representation is shifted before a saccade is made to its estimated
new position [17].

This strong link between action and attention has the advantage to account
for the fact that attention can be either maintained or switched under voli-
tional and behaviourally relevant control. In serial search, attention is sequen-
tially attracted to different potentially interesting locations until the correct
target is found. Which mechanism does ensure that attention can effectively
move its focus when the enlightened object is not the expected one, but stick to
it when it is found? In their seminal paper, Posner and Cohen [18] discovered
that the processing of a stimulus displayed just after attention is attracted to
its location is enhanced (what is coherent with the notion of attention), but
is decreased a certain amount of time after (around 200-300ms depending of
the task). This phenomenon called “inhibition of return” (IOR) can be inter-
preted as a mechanism ensuring that attention can not be attracted twice to
the same location in a short period of time, therefore encouraging exploring new
positions.

This quick overview of attention can be summarized by saying that atten-
tion is an integrated mechanism distributed over sensorimotor structures, whose
purpose is to help them to focus on a small number of regions in the input space
in order to achieve relevant motor behaviours. Therefore, virtually all structures
involved in behaviour have to deal with attention: for example the link between
working memory and attention has been established in [19] and [20]. Attention
is a motivated and integrated process.

3 Continuum Neural Field Theory

Even if the whole neural networks domain often draws (more or less tightly) on
biological inspiration, core mechanisms like the activation function or learning
rules often deny the inner temporal nature of neurons. They are usually designed
with no reference to time while it is perfectly known that a biological neuron
is a complex dynamic system that evolves over time together with incoming
information. If such artificial neurons can be easily manipulated and used in
classical networks such as the Multi-Layer Perceptron (MLP), Kohonen networks
or Hopfields maps, they can hardly pretend to take time into account, see [21]
for a complete review.
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In the same time, the Continuum Neural Field Theory (CNFT) has been
extensively analyzed both for the one-dimensional case [22, 23, 24] and for the
two-dimensional case [25] where much of the analysis is extendable to higher
dimensions. These theories explain the dynamic of pattern formation for lateral-
inhibition type homogeneous neural fields with general connections. They show
specifically that, in some conditions, continuous attractor neural networks are
able to maintain a localised bubble of activity in direct relation with the excita-
tion provided by the stimulation.

3.1 A Dynamic Equation for a Dynamic Neuron

We will use the notations introduced in [25] where a neuronal position is labelled
by the vector x which represents a two-component quantity designing a position
on a manifold M in bijection with [−0.5, 0.5]2. The membrane potential of a
neuron at the point x and time t is denoted by u(x, t) and it is assumed that
there is a lateral connection weight function w(x − x′) as a function of the
distance |x−x′|. There exists also an afferent connection weight function s(x,y)
from the position y in the manifold M ′ to the point x in M . The membrane
potential u(x, t) satisfies the following equation (1):

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
M

wM (x − x′)f [u(x′, t)]dx′

+
∫

M ′
s(x,y)I(y, t)dy + h .

(1)

where f is a transfer function from the membrane potential u to a mean firing
rate (either linear or sigmoidal or hyperbolic), I(y, t) is the input to the position
y at time t in M and h is the neuron threshold. wM is given by the equation
(2).

wM (x − x′) = Ae−
|x−x′|2

a2 − Be−
|x−x′|2

b2 with A, B, a, b ∈ �∗+ . (2)

3.2 Some Properties of the CNFT

There are several models using population codes focusing on noise clean-up such
as in [26, 27] or more general types of computation such as sensorimotor trans-
formations, feature extraction in sensory systems or multisensory integration
[28, 29, 30]. Deneve et al. [27] were able to show through analysis and simula-
tions that it is indeed possible to implement an ideal observer using biologically
plausible models of cortical circuitry and it comes as no surprise that this model
relies heavily on lateral interactions. We also designed a model [31] that uses lat-
eral interactions, as proposed by the CNFT, and fall into the more general case of
recurrent network whose activity relaxes to a smooth curve peaking at a position
that depends on the encoded variable that was analyzed as being a good imple-
mentation of a Maximum Likelihood approximator [27]. This dynamic model
of attention has been described using the Continuum Neural Field Theory that
explains attention as being an emergent property of a neural population. Using
distributed and iterative computation, this model has been proven very robust
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and able to track one static or moving target in the presence of noise with very
high intensity or in the presence of a lot of distractors, possibly more salient than
the target. The main hypothesis concerning target stimulus is that it possesses
a spatio-temporal continuity that should be observable by the model, i.e. if the
movement of the target stimulus is too fast, then the model can possibly loose
its focus. Nonetheless, this hypothesis makes sense when considering real world
robotic applications.

4 A Computational Model of Spatial Visual Attention

The first model that has been designed in [31] demonstrated why and how CNFT
can be used to attend to one moving stimulus and this model has been proven
to be extremely robust against both noise and distractors. But, what has been
considered to be a nice feature in this previous model is now viewed as a drawback
since it prevents the model from switching to another stimulus when this is
required to achieve a relevant behaviour. The natural solution to this situation
is then to actively inhibit this behaviour in order to allow the model to switch to
another stimulus. But then, the difficulty is to somehow ensure that the model
will not switch back and forth between two stimuli only. Since the ultimate goal of
the model is the active exploration of the visual scene, it needs a working memory
to be able to memorize what has been already seen and what has not. This is
even more difficult when considering camera movements that result in having
any stimulus moving on the retina image. A static working memory system would
be useless in this situation because it is generally disconnected from perception,
while for a visual exploration task the working memory system has to track
down every attended stimuli in order to prevent attending them again. There
are neurophysiological evidences [32] that inhibition of return (tightly linked
with working memory) can follow moving targets. In the following paragraphs,
we will describe the role and connectivity of each map in the model represented
in Figure 1. In a few words, there are three sub-systems: the input-visual-
focus ensemble, whose role is to process the visual input and to generate a
focus of attention; the fef-wm ensemble, designed to remember the previously
focused locations; the switching sub-architecture, used to dynamically change
the current focus of attention. Even if some maps have biologically inspired
names, discussing about this plausibility is out of the scope of this paper.

4.1 Architecture

Input Map. The input map in the model (cf. Figure 1) is a pre-processed
representation of the visual input. As our aim is not to focus on visual processing
but on motor aspects of attention, we did not model any local filtering nor
recognition. What we use as input in our model is a kind of “saliency map”
(see [33]) which represents in retinotopic coordinates the relative salience of the
objects present in the visual field. This may be the role of the area LIP in
monkey as discovered by Gottlieb et al. [34], but this issue is still controversial.
In the simulation, we will generate bubbles into that map of 40 × 40 units, but
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stimuli are presented in the same time, then the dynamic interactions within the
map will reduce this number to the most salient stimuli only. Roughly, in the
present architecture, this number is around seven stimuli which can be presented
simultaneously (this is mainly due to the size of the map compared to the lateral
extent of the inhibitory lateral connections).

Focus Map. The focus map receives excitatory inputs from the visual map
and have the same size as the visual map to ensure that topology is loosely
conserved. The lateral connectivity is wider than in the visual map so that only
one bubble of activity can emerge anytime. When no stimulus is present within
the input, no activity is present within the focus map. With these three maps
(input, visual and focus), the system can track one stimulus in the input
map which will represented by only one bubble of activation in focus. In [31]
we demonstrated that this simple system had interesting denoising and stability
properties. Now, to implement a coherent attention-switching mechanism, we
need to add a switching mechanism coupled with a working memory system. The
switching mechanism will be done by adding an inhibitory connection pattern
from a map later labelled inhibition. Let’s first describe the working memory
system.

FEF and WM Maps. fef and wm maps implement a dynamic working mem-
ory system that is able to memorize stimuli that have already been focused in
the past together with the currently focused stimulus. The basic idea to perform
such a function is to reciprocally connect these two maps one with the other
where the wm map is a kind of reverbatory device that reflects fef map activ-
ity. Outside this coupled system, the fef map receives excitatory connections
(using gaussian receptive fields to conserve topology) from both the visual and
focus maps. Activity in the visual map alone is not sufficient to generate ac-
tivity in fef; it needs a consistent conjunction of activity of both visual and
focus to trigger some activity in fef map. Since there is only one bubble of
activity in the focus map, the joint activation of visual and focus only happens
at the location of the currently focused stimulus. So, when the system starts,
several bubbles of activation appear in visual map, only one emerges in focus,
what allows the appearance of the same bubble in fef map. As soon as this
bubble appears, it is transmitted to wm which starts to show activity at the
location of that bubble which in turn excites the fef map. This is a kind of
reverbatory loop, where mutual excitation leads to sustained activity.

One critical property of this working memory system is that once this activity
has been produced, wm and fef map are able to maintain this activity even when
the original activation from focus disappears. For example, when the system
focuses on another stimulus, previous activation originating from the focus map
vanishes to create a bubble of activity somewhere else. Nonetheless, the previous
coupled activity still remains, and a new one can be generated at the location
of the new focus of attention.

Importantly, the system is also sensitive to the visual input and thus allows
memorized stimuli to have a very dynamic behaviour since a bubble of activity
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within fef and wm tends to track the corresponding bubble of activity within
the visual map. In other words, once a stimulus has been focused, it starts
reverberating through the working memory system which can keep track of this
stimulus, even if another one is focused. However, if the corresponding bub-
ble in visual disappears (e.g. get out of the image), the activity in fef and
wm vanishes. Another mechanism should be involved to remember out-of-view
targets.

Switching Sub-architecture. The mechanism for switching the focus in the
focus map is composed of several maps (reward, striatum, gpi, thalamus
and inhibition). The general idea is to actively inhibit locations within the
focus map to prevent a bubble of activity from emerging at these locations. This
can be performed in cooperation with the working memory system which is able
to provide the information on which locations have already been visited.

The striatum map receives weak excitatory connections from the fef map,
which means that in the normal case no activity appears on striatum map.
But when the reward neuron (which sends a connection to each neuron in the
striatum) fires, it allows bubbles to emerge at the location they are potentiated
by fef. The reward activity is a kind of “gating” signal which allows the
striatum to reproduce or not the fef activity.

The striatum map sends inhibitory connections to the gpi, which has the
property to be tonically active: if the gpi neurons receive no input, they will show
a great activity. They have to be inhibited by the striatum to quiet down. In
turn, the gpi map sends strong inhibitory connections to the thal map, which
means that when there is no reward activity, the thal map is tonically inhibited
and can not show any activity. It is only when the reward neuron allows the
striatum map to be active that the gpi map can be inhibited and therefore the
thal map can be “disinhibited”. Note that this is not a reason for the thal
to show activity, but it allows it to respond to excitatory signals coming from
somewhere else.

This disinhibition mechanism is very roughly inspired by the structure of the
basal ganglia, which are known as mediating selection of action [35]. It allows
more stability than direct excitation of the thal map by fef.

The inhibition map is reciprocally and excitatory connected with the thal
map, in the same way as fef and wm are. But the reverbatory mechanism
is gated by the tonic inhibition of gpi on thal. It is only when the reward
neuron fires that this reverbation can appear. inhibition receives weak exci-
tatory connections from fef (not enough to generate activity) and sends in-
hibitory connections to focus. The result is that when there is no reward,
the inhibitory influence of the inhibition map is not sufficient to change the
focus of attention in focus, but when the reward neuron fires, inhibition
interacts with thal and shows high activity where fef stores previously fo-
cused locations, what prevents the competition in focus to create a bubble
at a previously focused location, but rather encourages it to focus on a new
location.
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4.2 Simulated Behaviour

Having described the architecture of the model and the role of the different
maps, a switching sequence, where we want the model to change the focused
stimulus in favor of another unfocused one, is quite straightforward. As detailed
in Figure 2, the dynamic of the behavior is ruled both by the existing pathways
between the different maps (either excitatory or inhibitory) and the dynamic of
the neurons.

The input map is here clamped to display three noisy bubbles at three dif-
ferent locations in the visual field, so that the network can sequentially focus
these points. In Figure 2-a), the three noisy bubbles in map input are denoisi-
fied in the visual map, allowing only one bubble to emerge in the focus map
which is immediately stored in fef and wm. In Figure 2-b), a switch signal is
explicitly sent to the network via the reward unit, allowing the striatum to
be excited at the location corresponding to the unique memorized location in
the working memory system. This striatum excitation inhibits in turn the corre-
sponding location within the gpi map. In Figure 2-c), the localized destabiliza-
tion of the gpi prevents it from inhibiting the thalamus at this same location
and allow the inhibition map to activate itself, still at the same location. In
Figure 2-d), the inhibition map is now actively inhibiting the focus map at
the currently focused location. In Figure 2-e), the inhibition is now complete
and another bubble of activity starts to emerge within the focus map (precise
location of the next bubble is unknown, it is only ensured that it can not be the
previously visited stimulus). In Figure 2-f), once the focus is fully activated, it
triggers the memorization of the new location while the previous one is kept in
memory.

4.3 Experimental Results on a Robotic Platform

This model is built to deal with switching and focusing spatial selective attention
on salient locations. It is not meant to model the whole attention network. In
particular, we did not implement the recognition pathway and feature-selective
attention because we only wanted to figure out how attention can sequentially
scan equivalent salient locations. When we wanted to test this model on our
PeopleBot robot, we therefore chose to consider identical targets, for example
green lemons, which are artificially made salient for the system.

The experimental environment is the following (see Figure 3): we put the
PeopleBot in front of three green lemons lying on a table. At start, the camera
is directed somewhere on the table with each fruit somewhere in its viewfield.
The task for the system is to sequentially gaze (by moving its mobile camera) at
the three targets while never looking twice at the same fruit, even if the fruits
are moved during the experiment.

To make the fruits artificially salient, we applied a gaussian filter on the
image centered on the average color of a green lemon (H=80 S=50 in HSV
coordinates). This results in three noisy patches of activation (between 0 and
1) in the transformed image (see Figure 4). These activations then feed the
input map to be represented by a smaller set of neurons (here 40× 40). As the
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a) b)

c) d)

e) f)

Fig. 2. A simulated sequence of focus switching. See text for details
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a) b)

Fig. 3. Experimental environment: a) the PeopleBot is placed in front of a table with
three green lemons. b) The image grabbed by the camera

a) b)

Fig. 4. a) A gaussian filter around the green colour (H=80 S=50 in HSV coordinates) is
applied to the image to simulate the fact that green objects are attended. b) Activation
in input map

original image had a size of 640× 480, each neuron in the input map represents
something like 12×12 pixels. This representation is very noisy at this stage, but
the denoising properties of the dynamical lateral interactions in the visual map
allow to have bubble-shaped activities centered on the fruit.

The output of the system is a motor command to the mobile camera in order
to gaze at the currently attended object (ie have it at the center of the camera).
It is obtained by decoding the position of the unique bubble of activation in
the focus map in [−0.5, 0.5]2 and by linearly transforming this position into a
differential command to the effectors of the camera. This motor mapping is quite
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Fig. 5. Some snapshots of the sequence executed by the robot when trying to sequen-
tially gaze at three green lemons. First, the robot initially looks at somewhere on the
table. Then it gazes successively at fruit 1 and fruit 2. While fixating fruit 2, even if
someone exchanges fruit 1 and the third not previously focused fruit, the robot will
fixate the third “novel” fruit

obvious but dependent on the type of mobile camera, so we will not describe it
here. One important thing to notice here is that this command is differential,
i.e. just a little percentage of the displacement needed to go to the target is
actuated, then the network is updated with a new image and so on. We will
discuss this limitation later.

The switching sequence there is the same as in Section 4.2, the only difference
being the motor outputs. The user still has to send the switching signal by
“clamping” the reward unit to its maximal value for one step, and leaving it
decay with its own dynamic.

An example of behaviour of the model is given in Figure 5. The center of
gaze of the camera is first directed somewhere on the table. The model ran-
domly decides to focus its attention on the bottom-right fruit (let’s understand
“randomly” as “depending on the noise in the input image, the initial state of
the network and so on”) and step-by-step moves the camera to it. When the
camera is on it, the user can decide whenever he wants to focus another fruit
by clamping the reward neuron (in a biologically relevant scenario, the system
would have to learn that he could obtain more reward by switching its focus
and therefore make the reward neuron fire) which inhibits the currently focused
object. The focus of attention then moves to one of the two remaining fruits
(here the bottom-left one), what makes the camera gaze at it. At this point, the
“working memory” system contains the current and the past focused fruits. If
the user clamps again the reward unit, the new focused location will obligatorily
be on the third fruit, even if one slowly exchanges the locations of the first and
the third fruit, because the representations in the working memory are updated
by perception.
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5 Conclusion

Despite a massively distributed architecture, the model we presented is able to
accurately switch between available stimuli in spite of noise present at several
levels, fruit positions, distance of the robot from the table, lightening conditions,
etc. The resulting serialization of the behavior is a direct consequence of both
the dynamic of neurons and the existence of dedicated pathways between differ-
ent maps. What is important to understand is that any neuron in any map at
any time is always computing its activity from the available information it can
perceive via both afferent and lateral connections. The point is that there is no
such thing as a concept of layer, an order of evaluation nor a central executive
(either at the level of maps or at the level of the whole model). This is quite a
critical feature since it somehow demonstrates that the resulting and apparent
serialization of behavior in this model is a simple emergent property of the whole
architecture and consequently, there is no need of this famous central supervisor
to temporally organize elementary actions.

As a part of the FET Mirrorbot project, this work does not aim to model vi-
sual attention as a whole, but rather to offer a mechanism allowing efficient visual
search in a complex scene. As the Mirrobot scenario involves active exploration
of a complex and natural environment [36], it is computationally untractable
to consider the visual input as a raw data that would be finally transformed
into the correct motor output: the strategy we propose relies on the fact that
potentially interesting visual elements are often salient locations on the image,
and that sequential scanning of these salient locations is sufficient to appropri-
ately represent the environment. The different partners of the Mirrobot project
are currently working at gathering their different models to create a global and
coherent behaviour for the robot.

Nevertheless, the model presents a major drawback which is the speed at
which the camera can change its gaze to a target: the network has to be up-
dated after a camera displacement of approximately 5◦ so that the spatial
proximity of a fruit on the image before and after a movement of the cam-
era can be interpreted by the network as the representation of the same ob-
ject. This is quite incoherent with the major mode of eye movement, namely
saccades, as opposed to this “pursuit” mode which can not be achieved un-
der voluntary control: pursuit eye movements are only reflexive. To implement
saccades, we would need an anticipation mechanism that could foresee what
would be the estimated position of a memorized object after a saccade is made.
Such a mechanism has been discovered in area LIP of the monkey by [17]
where head-centered visual representations are remapped before the execution
of a saccade, perhaps via corollary motor plans from FEF. Ongoing work is
addressing this difficult problem by implementing a mechanism whose aim is
to predict (to some extents) the consequences of a saccade on the visual
input.
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Appendix

Dynamic of the Neurons

Each neuron loc in a map computes a numerical differential equation given by
equation 3, which is a numerized version of equation 1:

actloc(t + 1) = σ(actloc(t) +
1
τ
· (−(actloc(t) − baseline)

+
1
α
· (

∑
aff

waff · actaff (t) +
∑
lat

wlat · actlat(t)))) .
(3)
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Table 1. Parameters for each map: number of units and baseline activities

Map Size Baseline

visual 40*40 0.0

focus 40*40 -0.05

fef 40*40 -0.2

wm 40*40 0.0

inhibition 40*40 -0.1

thal 20*20 0.0

gpi 20*20 0.8

striatum 40*40 -0.5

reward 1*1 0.0

where:

σ(x) =

⎧⎪⎨
⎪⎩

0 if x < 0,
1 if x > 1,
x else .

(4)

and τ is the time constant of the equation, α is a weighting factor for external
influences, aff is a neuron from another map and lat is a neuron from the same
map.

All maps have the values τ = 1 and α = 13 except the reward map where
τ = 15. The size and baseline activities of the different maps are given in Table 1.

Connections Intra-map and Inter-map

The lateral weight from neuron lat to neuron loc is:

wlat = Ae−
dist(loc,lat)2

a2 −Be−
dist(loc,lat)2

b2 with A, B, a, b ∈ �∗+and loc �= lat . (5)

where dist(loc, lat) is the distance between lat and loc in terms of neuronal
distance on the map (1 for the nearest neighbour).

In the case of a “receptive field”-like connection between two maps, the af-
ferent weight from neuron aff to neuron loc is:

waff = Ae−
dist(loc,aff )2

a2 with A, a ∈ �∗+ . (6)

The connections in the model are described in Table 2.
These parameters have been found experimentally to ensure that the global

functioning of the network is correct. Nevertheless, they are only orders of mag-
nitude because small variations in their value do not affect drastically the per-
formance of the network. For example, the fact that all lateral connections have
the same parameters (except for the focus map which has a wider inhibitory
extent – b = 17.0 – to allow the emergence of only one bubble throughout the
map) is only for the sake of simplicity. The variations in the parameter a of the
“receptive-field” connections are explained by the smaller size of the thal and
gpi maps (as they are supposed to be small subcortical nuclei) and by the fact
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Table 2. Connections between maps: parameters refer to equations 5 and 6

Source Map Destination Map Type A a B b

input visual receptive-field 2.0 2.0 - -

visual visual lateral 2.5 2.0 1.0 4.0

visual focus receptive-field 0.25 2.0 - -

focus focus lateral 1.7 4.0 0.65 17.0

visual fef receptive-field 0.25 2.0 - -

focus fef receptive-field 0.2 2.0 - -

fef fef lateral 2.5 2.0 1.0 4.0

fef wm receptive-field 2.35 1.5 - -

wm fef receptive-field 2.4 1.5 - -

fef inhibition receptive-field 0.25 2.5 - -

inhibition focus receptive-field -0.2 3.5 - -

inhibition inhibition lateral 2.5 2.0 1.0 4.0

inhibition thal receptive-field 3.0 1.5 - -

thal inhibition receptive-field 3.0 1.5 - -

fef striatum receptive-field 0.5 2.5 - -

striatum striatum lateral 2.5 2.0 1.0 4.0

striatum gpi receptive-field -2.5 2.5 - -

gpi thal receptive-field -1.5 1.0 - -

reward striatum one-to-all 8.0 - - -

that the inhibitory connection from inhibition to focus has to be wider to
achieve successful switching.

An interesting issue would be to incorporate a learning mechanism to set
these parameters, but it is very difficult to define an error function as the desired
behaviour of the network is strongly temporal. In order to do so, we would have
to integrate this mechanism into a more general framework, where reinforcement
learning could play a major role in weighting the connections through trial-and-
error learning phases.
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Abstract. Audition is one of our most important modalities and is widely used 
to communicate and sense the environment around us.  We present an auditory 
robotic system capable of computing the angle of incidence (azimuth) of a 
sound source on the horizontal plane.  The system is based on some principles 
drawn from the mammalian auditory system and using a recurrent neural net-
work (RNN) is able to dynamically track a sound source as it changes azimuth-
ally within the environment.  The RNN is used to enable fast tracking responses 
to the overall system.  The development of a hybrid system incorporating cross-
correlation and recurrent neural networks is shown to be an effective mecha-
nism for the control of a robot tracking sound sources azimuthally. 

1   Introduction 

The way in which the human auditory system localizes external sounds has been of 
interest to neuroscientists for many years.  Jeffress [1] defined several models of how 
auditory localization occurs within the Auditory Cortex (AC) of the mammalian 
brain.  He developed a model for showing how one of the acoustic cues, namely that 
of the Interaural Time Difference (ITD) is calculated.  This model describes the use of 
neurons within the auditory cortex as coincidence detectors [2].  Jeffress also de-
scribes the use of coincidence detectors for other auditory cues, namely Interaural 
Level Difference within the auditory cortex.  These two cues (ITD and ILD) together 
enable the auditory system to localize a sound source within the external environment, 
calculating both the azimuth and distance from the observer. 

Recently, robotics research has become interested in the ability to localize sound 
sources within the environment [3-4].  Audition is a vital sense for interpreting the 
world around us as audition enables us to perceive any object with an acoustic ele-
ment.  For localization and navigation purposes, the primary modality in robotics has 
been that of vision [5-6].  However, audition has some advantages over vision in that 
for us to visually see an object it must be within line of sight, i.e. not hidden by other 
objects.  Acoustic objects however do not have to be within line of sight of the ob-
server and can be detected around corners and when obscured by other objects. 
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This paper describes an acoustic tracking robotic system that is capable of sound 
source angle estimation and prediction along the horizontal plane.  This system draws 
from some basic principles that exist in its biological equivalent, i.e. that of ITD, trajec-
tory predictions, and the mammalian auditory cortex.  Our system also has the ability to 
detect the angle of incidence of a sound source based on Interaural time difference. 

2   Motivation for Research 

How does the mammalian auditory system track sound sources so accurately within 
the environment?  What mechanisms exist within the AC to enable acoustic localiza-
tion and how can these be modeled? The AC of the mammalian brain works with ex-
cellent accuracy [7] and quick response times to the tracking and localization of dy-
namic sound sources.   

With the increasing use of robots in areas such as service and danger scenarios [4], 
we are looking into the mechanisms that govern the tracking and azimuth estimation 
and predictions of sound sources within the mammalian AC to guide a model for 
sound source tracking within a robotic system.  Our motivation comes from being 
able to create an acoustic sound source tracking robot capable of tracking azimuthally 
the angle of a dynamically moving stimulus. 

With the scenario of interactive service robots, we can envisage the robot as a 
waiter in a restaurant serving drinks to the patrons.  In order for this to be possible the 
customers would need to be able to attract the robot waiter’s attention.  The robot 
would need to detect the direction the sound comes from and attend to it.  Fig. 1 
shows an example of this scenario. 

 

Fig. 1. Shows an example of a robot attending to sounds 

3   The System Model 

The model for our system has two main components; these are Azimuth Estimation 
and Neural Prediction.  The first component in our model determines the azimuth of 



 A Hybrid Architecture Using Cross-Correlation and Recurrent Neural Networks 75 

 

the sound source from the environment using Cross-Correlation and presents this an-
gle to the Neural Predictor for estimation of the next predicted angle in the sequence 
using an RNN.  The Neural Predictor receives a set of input angles passed from esti-
mations of the angle of incidence from the azimuth estimation stage in the model and 
uses these to predict the angle for the robot to attend to next.  The idea behind this is 
to enable the robot to move to the next position where it expects to hear the sound and 
then waits to see if it hears it.  The system therefore has a faster response time to its 
tracking ability as the robot is not constantly calculating the position of the sound 
source, then attending and repeating this phase recursively, as this would mean the 
robot would be in constant lag of the actual position for the sound source.  Instead our 
system has an active model for predicting the location of the sound source. 

The system requires two valid sound inputs (as discussed in section 3.2).  When the 
network receives its second input at time t2 the network provided an output activation 
to attend to next.  This is when the robot is informed to go at time t2 as opposed to the 
passion the sound was detected at during time t2 itself. Our system therefore provides 
a faster response in attending to the position of the dynamic sound source enabling 
more real-time tracking.  

3.1   Azimuth Estimation 

Azimuth estimation is the first stage of the overall system model and is used to deter-
mine the angle of incidence of the dynamic sound source from the environment.  The 
azimuth estimation is performed by a signal processing variation of Cross-Correlation 
(Eq. 1).  It has also been shown that the AC employs the use of Cross-Correlation as 
discussed by Licklider [8] for angle estimation.  Therefore, we have employed Cross-
Correlation to analyze the two signals g(t) and h(t) received at the left and right mi-
crophones in our system.  Ultimately, Cross-Correlation as discussed in [9] is used for 
determining the ITD with the use of coincidence detectors [1].   

Within our model the Cross-Correlation method is used to check g(t) and h(t) for 
the position of maximum similarity between the two signals, which results in the crea-
tion of a product vector C where each location represents the products of signals g(t) 
and h(t) at each time step.  The robot records a 20ms sample of sound at each micro-
phone resulting in an N x M matrix of 2 x 8820 where each row represents the signal 
received at each of the microphones.  To correlate the two signals they are initially 
offset by their maximum length.  At each time step signal h(t) is ‘slid’ across signal 
g(t) and the product of the signals is calculated and stored in the product vector C.   

 ∑
−

=
+≡

1

0

)(),(
N

k
kkjj hgthgCorr  (1) 

Fig. 2 below shows an example of how the two signals g(t) and h(t) are checked for 
similarity.  As can be seen in the graph of Fig. 2a we can see that the function starts 
by offsetting the right channel h(t) to the beginning of the left channel g(t) and gradu-
ally ‘slides’ across until h(t) leads g(t) by the length of the matrix (graph in Fig. 2c).  
When the signals are in phase (shown by the shaded area in the graph of Fig. 2b) the 
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resultant correlation vector will produce a maximum value at this time step position in 
the product vector C. 

 
a) 

 
b) 

 
c) 

Fig. 2. Shows the ‘sliding’ of the signals presented to the cross-correlation function 
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Fig. 3. Shows the product vector C of the Cross-Correlation of signals g(t) and h(t) 

The maximum position within the resultant correlation vector represents the point 
of maximum similarity between g(t) and h(t).  If the angle of incidence was at 0o then 
this would result in g(t) and h(t) being in phase with each other therefore resulting in 
the maximum value in C being in the middle location of the vector.  See Fig. 4 for an 
example of the creation of a correlation vector from two slightly offset signals. 

Therefore, to determine the amount of delay offsets for the ITD we subtract the 
location of the maximum point in C from the size of C/2.  We divide the correlation 
vector C by 2 as the method of cross-correlation creates a vector that is twice the 
size of the original signal (due to the sliding window) and therefore to find the mid 
point of the vector (i.e. zero degrees) we divide by 2.  This result is used to help de-
termine the angle of incidence of the sound source.  The sounds within the system 
are recorded with a sample rate of 44.1 KHz resulting in a time increment  of 
22.67μs.  Therefore, each position within the correlation vector is equal to  and 
represents 2.267-5 seconds of time.  Knowing the amount of time per delay incre-
ment and knowing the number of delay increments (from the correlation vector C) 
then using equation 2 we can calculate the ITD, or more precisely in terms of our 
model, the time delay of arrival (TDOA) of the sound source between the two mi-
crophones. 

 TODA = ((length(C) / 2) – CMAX)*  (2) 

This result gives us the time difference of the reception of the signal at the left and 
right microphones; this in turn is used in conjunction with trigometric functions to 
provide us with  the angle of incidence of the sound source in question.  Looking at 
Fig. 5 we can determine which trigometric function we need to use to determine the 
angle of incidence. 

We have a constant value for side ‘c’ set at 0.30 meters (the distance on the robot 
between the two microphones, see Fig. 10) and ‘a’ can be determined from the ITD or 
TDOA from Eq. 2 substituted into Eq. 3.  Therefore, in order to determine the azi-
muth of the sound source we can use the inverse sine rule as shown in Eq 5. 



78 J.C. Murray, H. Erwin, and S. Wermter 

 

 Distance TDOATimeSpeed ×=×= 384  (3) 

where, Speed is the speed of sound = 384m/s at room temperature of 24oC at sea 
level.  TDOA is the value returned from Eq. 2. 
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From these equations we can see that depending on the value of the TDOA we can 
determine the azimuth of the dynamic sound source.  TDOA values can range from -
90o to +90o.  The values of  returned are used to provide input to the recurrent neural 
network of the second stage within the system for prediction of azimuth positions.  
This initial part of the model has shown that it is indeed possible to create a robotic 
system capable of modeling ITD to emulate similar robotic tasks.  That is, we have 
looked at functional mechanisms within the AC and represented the output of these 
mechanisms within our robot model. 

 

Fig. 4. Shows how the sliding-window of the Cross-Correlation method builds the Correlation 
vector C.  As the signals get more in phase the value in C increases 

Signals:  g(t) 111112222111        h(t) 111111112222 
 
          Product Vector C 
    Location  Value 
11111222211100000000000       1      1 
00000000000111111112222 
1111122221110000000000       2      2 
0000000000111111112222 
111112222111000000000        3      3 
000000000111111112222 
11111222211100000000        4      5 
00000000111111112222 
1111122221110000000        5      7 
0000000111111112222 
111112222111000000        6      9 
000000111111112222 
11111222211100000        7      11 
00000111111112222 
1111122221110000        8      12 
0000111111112222 
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Fig. 5. Geometric diagram of sin(x) and cos(x) 

3.2   Speed Estimation and Prediction 

Speed estimation and prediction is the second stage in our model and is used to esti-
mate the speed of the sound source and predict the next expected location.  It has been 
shown that within the brain there exists a type of short term memory that is used for 
such prediction tasks and in order to predict the trajectory of an object it is required 
that previous positions are remembered [10] to create temporal sequences. 

Within this stage of our model, we create a recurrent neural network (RNN) with 
the aim to train this network to detect the speed of a sound source and provide esti-
mated prediction positions for the robot to attend to.  This stage in the model receives 
its input from the previous azimuth estimation stage as activation on the relevant neu-
ron within the input layer of the network.  Each neuron within the input and output 
layers represent 2o of azimuth, therefore an angle of 1o will cause activation on the 
first input neuron whilst an angle of 3o will cause activation on the second input neu-
ron.  As can be seen in Fig. 6 the input and out layers of the network have 45 units 
each with each unit representing 2o of azimuth.  Therefore, the layers only represent a 
maximum of 90o azimuth, however as the sign (i.e. + or – angle recorded by the cross-
correlation function) is used to determine if the source is left or right of the robots 
center then the network can be used to represent +90o and -90o thus covering the front 
hemisphere of the robot. 

The RNN consists of four separate layers with weight projections connecting neu-
rons between layers.  The architecture of the network is as follows: 

Layer 1 – Input – 45 Units 
Layer 2 – Hidden – 30 Units 
Layer 3 – Context – 30 Units 
Layer 4 – Output – 45 Units 

Fig. 6 shows the layout of the architecture within the network along with the fully 
connected layers.  The network developed is based on the Elman network [11] which 
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provides a method for retaining context between successive input patterns.  In order 
for the network to adapt to sequential temporal patterns a context layer is used.  To 
provide context the hidden layer has one-to-one projections to the context layer within 
the network (both the context and hidden layers must contain the same amount of 
neurons).  The hidden layer activation at time t-1 is copied to the context layer so that 
the activation is available to the network at time step t during the presentation of the 
second pattern within the temporal sequence.  This therefore enables the network to 
learn temporal sequences which are required for the speed prediction task. 

The input to the RNN is provided as activation on the input neuron that corre-
sponds to the current angle calculated from the first stage in the model.  In order for 
the network to make a prediction it must receive two sequential input activation pat-
terns at times t-1 and t0.  This enables the RNN to recognize the temporal pattern and 
provide the relevant output activation. 

 

Fig. 6. Recurrent Neural Network architecture used in model 

Due to the RNN output activation only being set for the predicted angle to attend 
to, it is necessary to still provide the system with an angle of incidence to move to be-
fore the prediction is made.  The angle recorded by the initial stage of the system is 
referred to as the perceived angle due to this being the angle of the sound source rela-
tive to the robot.  The system also maintains a variable containing the current angle of 
the robot from its initial starting position of 0o.  Therefore the input activation for the 
RNN is calculated from Current angle + Perceived angle with the output activation 
being the angle from the starting position.  Therefore, the angle to move to is RNN 
output angle – current angle. 

The weight update algorithm for the network is based on that of the normal back-
propagation as shown in Eq 7, with the stopping criterion for the network being set to 
0.04 for the Sum Squared Error (SSE).  This value was chosen as it was the highest 
value of the SSE that classified all patterns within the least number of epochs.  The 
value of the SSE is checked after each epoch.  If the change in the SSE is below 0.04 
between epochs then training stops and the network is said to have converged, other-
wise the weights are adapted and presentation of training patterns continues. 
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where, wij = the weight change between neurons i and j, n = current pattern pre-
sented to the network,  = learning rate = 0.25, j = error of neuron j, oi = output of 
neuron i,  = momentum term used to prevent the weight change entering oscillation 
by adding a small amount of the previous weight change to the current weight change. 

The RNN architecture provides the system with the ability to recognize a prede-
termined number of speeds (provided during training) from a sequential temporal pat-
tern and therefore introducing a form of short-term memory into the model.  After the 
RNN receives two time steps a prediction of the next location of the sound source is 
provided for the robot to attend to.  This enables a faster response from the system 
and therefore enables a more real-time implementation of the sound source tracking 
system.  This is due to the fact that the system does not have to wait for a subsequent 
third sound sample in order to determine the location in azimuth of the sound source. 

3.3   Training the RNN 

In order to train the RNN to recognize the various speeds, a separate training sub-
group was created within the training environment for each individual speed.  Each 
sub-group within the training environment contains the events required to train the 
network to individual speeds. 

 

Fig. 7. Sub-group training environment for speed = 1 showing the required input activations in 
order to create an output activation remembering that the patterns are temporal 
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The events (input sequences i.e. angle representations) are activations of ‘1’ on the 
neuron they represent and are presented for training to the network sequentially in the 
order expected from a sound source (and shown in Table 2).  This is to ensure the 
network learns the correct temporal sequence for the speeds it needs to recognize and 
provide prediction for. 

The environment shown in Fig. 7 presents the nine events in a sequential manner, 
that is, every time the pattern is presented to the network the events are given in the 
same order Event_0  Event_8.  However, the last two events (Event_7 and 
Event_8) within the training sub-group deviate from the temporal order and output 
activation of the first 7 events.  These two events are provided to ensure the network 
does not only learn to provide activation output on the presentation of input activa-
tion on neuron 2 in Fig. 7 but also ensures that past context is taken into account and 
output activation is only set if a valid temporal pattern is provided to the network, in 
this case, at time t-1 activation on input neuron 1 and at time t0 activation on input 
neuron 2 resulting in an output activation at time t0 on the third output neuron in the 
network. 

Within the training environment 20 sub-groups were created with each sub-group 
representing a set speed, as each sub-group contains 9 training events this gives us a 
total of 180 events to present to the network.  As previously mentioned, we trained the 
network by presenting the events within the sub-groups in a sequential order.  How-
ever, each sub-group was presented in a random fashion to the network so as to pre-
vent the network learning the presentation sequence of the sub-groups themselves.  
The network took on average 35000 epochs to converge, this varied slightly however 
due to varying initialization weights in the network when training. 

4   Testing the System Model 

The testing is carried out in two separate phases for the system model, with the azi-
muth estimation stage first being tested to ensure correct operation, i.e. correct estima-
tion of the sound source along the horizontal plane.  Once this stage is confirmed to 
be operating correctly, the output results are stored to file and used as the input to the 
second stage in that model, the Neural Predictor stage.   

The results from the second stage on the model are checked against results from 
both predetermined input activation and randomly generated output activations to en-
sure the system does not respond erroneously due to unexpected input sequences, or 
incorrect weight updating and convergence. 

4.1   Stage 1 

We test the azimuth estimation stage of the model to ensure the correct azimuth val-
ues were being calculated and presented to the RNN.  For this the robot was placed in 
the middle of a room with a speaker placed 1.5 meters from the center of the robot.  
The speaker was placed at 10 separate angles around the front 180o of the robot.  Each 
angle was tested five times with the results shown in table 1. 
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Table 1. Tests of Azimuth Estimation stage of model 

Test Actual  Angle Robot Position 
(Average) 

Accuracy 
% 

Test 1 -90 ±4 95.5 
Test 2 -50 ±2 96 
Test 3 -40 ±1 97.5 
Test 4 -30 ±0 100 
Test 5 0 ±2 98 
Test 6 +10 ±2 80 
Test 7 +20 ±1 95 
Test 8 +35 ±2 94.3 
Test 9 +45 ±2 95.6 
Test 10 +70 ±3 95.7 

As can be seen from table 1 the maximum average error was ±1.9o.  That is, the 
averages in column 3 summed and divided by number of test cases to give the average 
system error (±19/10 = 1.9).  As shown in [7] the human auditory system can achieve 
an accuracy of ±1.5o azimuth.  Therefore, the results from the initial tests for this 
stage in our model show that the use of cross-correlation for calculating TDOA and 
ultimately the angle of incidence is an effective system for determining the azimuth 
position of a sound source. 

Furthermore, the results passed into the second stage of our model are also accu-
rately representative of the actual position of the sound source within the environment 
and therefore a useful input into the RNN for predicting the next angle. 

4.2   Stage 2 

Testing of the RNN after training was done with the aid of azimuth results, i.e. a data 
file was created with the angles returned of the initial stage of the model as the sound 
source was moved around the robot at various speed levels.  This data was then pre-
sented to the network in order to check the response of the system to actual external 
data as opposed to simulated environments. 

Fig. 8 shows the response of the network when the test data presented activation in 
an accepted sequential order.  The first angle presented in Fig. 8a was within the 
range 0o  2o and therefore provided input activation to the first neuron.  Next, in 
Fig. 8b the angle presented was within the range 2.01o  4o and therefore activated 
input neuron 2; this resulted in a recognizable temporal pattern therefore providing 
output activation for the next predicted position as shown in the output layer of the 
network in Fig. 8b. 

Fig. 9 shows the response of the RNN to a different sequence (speed) to that pre-
sented in Fig. 8.  Fig 9a shows the first pattern at t-1 with an activation on the first 
input neuron, representing an azimuth estimation of 0o  2o.  The second pattern 
presented at time t0 (Fig. 9b) is on the 11 input neuron and so represents an azimuth 
angle of 20o  21.9o.  Output activation is also provided in Fig. 9b on the 21st  
output neuron representing an angle of azimuth of 40o  41.9o for the robot to at-
tend to. 
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a)                                                            b) 

Fig. 8. Shows the response of the RNN after input activations at t-1 and t0 for speed 1 

 
a)                                                            b) 

Fig. 9. Shows the response of the RNN after input activations at t-1 and t0 for speed 8 

There are always going to be cases when a set of angles presented to the network 
do not match any predetermined speed representations.  To ensure the system pro-
vides correct output activation for unforeseen input sequences a testing environment 
of 10000 randomly generated events was created.   

Once the environment was created it was first passed through an algorithm to ana-
lyze the input layer activations within the training environment to determine the cor-
rect output activation that should be seen; these ‘desired’ input (with calculated) out-
put activation patterns are then stored to file to later compare with the actual output 
activation received from the network once the randomly generated test environment 
has been passed to the system. 

The output activations of the network were recorded and compared with the ‘de-
sired’ stored results to ensure they matched.  The comparison showed that from the 
randomly created test environment only one pair of unforeseen sequences caused a 
misclassification. Fig. 10 shows the particular misclassification found within the RNN 
during the specific temporal pair of input sequence patterns.  Fig. 10a shows at t-1 in-
put activation falls on neuron 28 and at time t0 Fig. 10b shows that input activation 
falls on neuron 18.  Clearly this is not one of out trained speeds (as the sequence goes 
backwards) however output activation is set at time t0 to neuron 39.  
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                          a)                                                           b) 

Fig. 10. Shows an misclassification within the trained RNN providing undesired output activa-
tion to the system 

Table 2. Representation of input activations for the first 4 speeds 

Speed Input Representation 
1t1 1000000000…………….. 
1t2 0100000000…………….. 
2t1 1000000000…………….. 
2t2 0010000000…………….. 
3t1 1000000000…………….. 
3t2 0001000000…………….. 
4t1 1000000000…………….. 
4t2 0000100000…………….. 

Table 2 gives an example of the input sequences for the first four trained speeds.  The 
binary pattern represents activation on the input neurons of the RNN where ‘1’ shows 
activation on the relevant neuron.  As can be seen from the table, each speed is deter-
mined by the increment in neuron activation between t1 and t2 in the temporal sequence. 

The results from the testing of the RNN shows that it is possible to encode several 
temporal patterns within a RNN using a context layer to act as a form of short-term 
memory within the system to provide history information for the network to use in 
classifying temporally encoded patterns.  With the exception of the temporal sequence 
shown in Fig. 10 which shows a misclassification in the system for a temporal se-
quence pair, all other combinations of sequences within the testing environments 
10000 events provided correct desired output activation i.e. either no output at all for 
undesired temporal pairs or single neuron output activation for desired temporal se-
quence pairs. 

With the introduction of new sub-groups within the training environment it is pos-
sible to remove anomalies from the network.  This would be accomplished by includ-
ing the temporal sequence shown in Fig. 10 but having no output activation set.  How-
ever misclassifications will not be detected until the sequence that generates them is 
presented to the network. 
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5   Discussion 

Much research has been conducted in the field of acoustic robotics.  However, many 
of the systems developed have concentrated more on the principles of engineering 
rather than that of drawing inspiration from biology.  Auditory robots have been cre-
ated which use arrays of microphones to calculate independent TDOA between mi-
crophone pairs [12].  Research has also been conducted into the AC of a robotic barn 
owl [13] for attending to objects within the environment.  However, such systems in-
clude other modalities such as vision to aid the localization of the spatial object. 

The currently developed model described here, whilst providing excellent results 
for sound source azimuth estimation and tracking can not adapt in an intuitive way to 
the dynamics of real world acoustic objects.  Further study is currently being con-
ducted into creating an architecture that can learn to recognize the temporal sequences 
of new speeds the system may encounter but does not have in its training set.  Using 
this adaptive network to recognize new temporal patterns, it may also be possible for 
the network to learn how to recognize acceleration and deceleration patterns through 
this adaptive model.  This adaptive network would provide the system with the ability 
to more accurately track sound sources whose dynamic motion is not a fixed constant 
but rather varies its speed randomly. 

 

Fig. 11. The robot used for sound source tracking with the two microphones as ears 

6   Conclusion 

A hybrid architecture has been presented with inspiration drawn from the mechanisms 
that have been shown to exist within the AC [1, 7, 14] of the mammalian.  By using 

Microphones 



 A Hybrid Architecture Using Cross-Correlation and Recurrent Neural Networks 87 

 

biological inspiration we can take advantage of the cues and mechanisms that already 
exist to build our model.  The model has been shown to utilize the ITD cue to deter-
mine the angle of incidence of the sound source and present this to a RNN for tempo-
ral processing to determine the current speed and predict the next location for the ro-
bot to attend to.  The hybrid architecture shown has proven to have excellent potential 
for developing robotic sound source tracking system which draws inspiration from 
their biological counterpart.  The results of our model have shown comparable with 
the capabilities of the human AC with the azimuth localization differing by an aver-
age of ±0.4o. 

As more information on the workings of the AC becomes known it would be pos-
sible to further adapt and create neural network architectures that emulate the func-
tionality of the various components of the AC giving rise to robotic system which op-
erate in the acoustic modality in much the same manner as the mammalian. 
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Abstract. For a robot to be autonomous it must be able to navigate indepen-
dently within an environment. The overall aim of this paper is to show that locali-
sation can be performed even without having a pre-defined map given to the robot
by humans. In nature place cells are brain cells that respond to the environment
the animal is in. In this paper we present a model of place cells based on Self Or-
ganising Maps. We also show how image invariance can improve the performance
of the place cells and make the model more robust to noise. The incoming visual
stimuli are interpreted by means of neural networks and they respond only to a
specific combination of visual landmarks. The activities of these neural networks
implicitly represent environmental properties like distance and orientation to the
visual cues. Unsupervised learning is used to build the computational model of
hippocampal place cells. After training, a robot can localise itself within a learned
environment.

1 Introduction

Despite progress made in the fields of AI and Robotics, robots today still remain vastly
inferior to humans or animals in terms of performance [1]. One reason for this is that
robots do not possess the neural capabilities of the brain. Human and animal brains
adapt well to diverse environments, whereas artificial neural networks are usually lim-
ited to a controlled environment, and also lack the advantage of having millions of
neurons working in true parallelism.

In an mammal’s brain place cells fire when the animal occupies a familiar portion
of its environment, known as its place field. However, the activity of cells, or even
a collection of such cells, simply indicates different locations; it informs the animal
where it is, but it cannot directly inform the animal where it should go [2, 3, 4]. One
role of the place cells is to associate a path integrator and local view so that when an
animal enters a familiar environment, it can reset its path integrator to use the same
coordinate system as during previous experiences in the environment [5].

To navigate in familiar environments, an animal must use a consistent representation
of its positions in the environments. In other words, the animal must localise in order
to navigate within the environment. Visual clues that support a local view to inform
the animal of its initial position may be ambiguous or incomplete and there must be

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 88–106, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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a way to settle on a consistent representation of localisation [4]. The evidence from
neurophysiology suggests that place cells are well suited for this role. Spikes fired by
dentate granule cells, CA1 and CA3 pyramidal cells, are strongly correlated with the
location.

In a experimental environment, place cells have clearly shown a firing rate that re-
lates to that environment. From the experimental evidence [5] we can summarise their
properties as follows:

1. When distinct landmarks move, place fields also move proportionately.
2. Place cells continue to show clean place fields when landmarks are removed.
3. The firing rate correlates to more than the location of the animal.
4. Place cells show different place fields in the environment.
5. Place cells are directional when the animal takes a limited path, but non-directional

when wandering around randomly in open fields.
6. Place cells are multi-modal. They can integrate various input sensors to localise

with vision being the primary one. In the case of no vision or restricted vision, they
localise using other sensors such as odour, or whiskers.

In this paper we evaluate our computational place code model in a realistic context,
using a Khepera robot. Visual information is provided by a linear vision system. Eight
infra-red sensors are used to provide reactive behaviour. This paper is structured as
follows: we describe the basis of the model in section 2, outline of the model in section
3, following with the experiments and results in section 4.

2 Self Organising Map for Localisation

In the brain, hippocampal pyramidal cells called place cells have been identified that fire
when an animal is at a certain location within its environment. In our model, we show
that place cells based on SOMs have potential to provide locations to the path integrator
and place cells can localise the robot in a familiar environment. Self-localisation in
animals or humans often refers to the internal model of the world outside. As seen in a
white water maze experiment [4], even though a rodent was not given any landmarks,
it could still reach its goal by forming its own internal representation of landmarks
of the world outside. It is seen in humans and animals that they can create their own
landmarks, depending on the firing of place cells [6]. These cells change their firing
patterns in an environment when prominent landmarks are removed. With this evidence
from computational neuroscience, it is reasonable to assume that a model of place cells
might prove to be an efficient way of robot localisation using vision.

One possibility is to build a place code model that is based on Self Organising Maps
(SOM). SOM [7] networks learn to categorise input patterns and to associate them with
different output neurons, or a set of output neurons. Each neuron, j, is connected to the
input through a synaptic weight vectorwj = [wj1....wjm]T . At each iteration, the SOM
finds a winning neuron v by minimising the following equation:

v(x) = arg minj‖x(t) − wj‖, j = 1, 2, ...n (1)
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x belongs to an m-dimensional input space, ‖.‖ is the Euclidean distance, while the
update of the synaptic weight vector is done in the following way:

wj(t + 1) = wj(t) + α(t)hj,v(x)(t)[x(t) − wj(t)], j = 1, 2, ......n, (2)

This activation and classification are based on features extracted from the environ-
ment by the network. Feature detectors are neurons that respond to correlated combina-
tions of their inputs. These are the neurons that give us symbolic representations of the
world outside. In our experiments, once we get symbolic representations of the features
in the environment we use these to localise the robot in that environment.

The sparsification performed by competitive networks is very useful for preparing
signals for presentation to pattern associators and auto associators, since this represen-
tation increases the number of patterns that can be associated or stored in such networks
[8, 9]. Although the algorithm is simple, its convergence and accuracy depend on the
selection of the neighbourhood function, the topology of the output space, a scheme for
decreasing the learning rate parameter and the total number of neuronal units [10].

The removal of redundancy by competition is thought to be a key aspect of how the
visual system operates [8, 9]. Competitive networks also reduce the dimensions of the
input vector as a set of input patterns, in our case pixels of the input image vector. The
representation of a location is achieved by activation of a neuron.

An important property of SOMs is feature discovery. Each neuron in a SOM be-
comes activated by a set of consistently active input stimuli and gradually learns to
respond to that cluster of coactive inputs. We can think of SOMs as feature discovery in
the input space. The features in the input stimuli can thus be defined as consistently
coactive inputs and SOMs thus show that feature analysers can be built in without
any external teachers [8]. This is a very important aspect of place cells, as they have
to respond to unique features or landmarks in the input space in order to localise the
robot.

3 Scenario and Architecture

Our approach is to try to model aspects of neural visual localisation present in human
and animal brains. The main emphasis of this research is to build a robot that uses robust
localisation, with the objective that it has learning and autonomy. The central objective
is on natural vision for navigation based on neural place codes. This section summarises
the scenario and architecture of our approach.

3.1 Scenario

In our experiments the overall goal for the robot (a Khepera robot, figure 1(a)) was
to to localise itself between two desired locations. In order to facilitate natural vision
experiments, we provided random colour-coded squares on the wall, along with some
distinguishable features like cubes, cylinders and pyramids randomly kept in the envi-
ronment as shown in figure 1(b). During experimentation, the robot should be able to
create its own internal representation of the world model based on unsupervised learn-
ing for neural place codes.
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Fig. 1. (a) A Khepera robot used during experimentation. (b) A birds eye view of the overall
experiment setup and the cage in which the robot was allowed to move in

3.2 Overall Architecture of the Model

Humans and animals use various sensors to navigate [11, 12]. In our robot model, we
are primarily using vision as a global navigation strategy and for our local navigation
strategy we have employed the use of infra red sensors.

Our approach is based upon functional units each of which uses a neural network. An
overview of the different functional units can be seen in figure 2. SOMs are used for the
visual landmarks, which enable the robot to generate its internal representation of the
world based on the most salient features in its visual field. A primitive visual landmark
allows us to implement simple, visually-based behaviour. The transform invariance and
pattern completion modules are based on MLPs, the output of which forms the input to
the SOM. Furthermore, self-localisation and target representation are based on SOMs.

In figure 2, ‘visual information derivation’ is a module which is responsible for
getting the images from the robot’s camera. The Visual information derivation module
is responsible for image pre-processing and normalising the images for the network.
Transform invariance, a part of our localisation module (figure 5) makes use of asso-
ciative memory and pattern completion for noise reduction. The localisation module is
responsible for the localisation of the robot in the environment.

Effective navigation depends upon the representation of the world the robot is using
[11]. In our architecture the world representation is called ‘spatial representation’. This
provides the path planning module with necessary information from the localisation
module and visual target module. It maps both the current location and the location of
the target into the same map and enables the path planning module to compute the most
appropriate path. Once we can map both the visual target and the current location of the
robot into the same spatial representation, the ‘path-planning module’ directs the robot
to its goal. The path planning can derive a path which is the shortest and quickest way
towards the goal.

There are various ways in which the robot can be instructed as to where its target
for navigation is. We are exploring how to translate the place code output and target
representation into a spatial representation. The path planning module provides output
to the ‘motors control’. This forms the global navigation strategy.

(a) (b)
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Fig. 2. Overall architecture used in the visual navigation strategy of the robot. This shows the
flow of the model

We have implemented the local navigation strategy using reactive behaviour. Both
the global and local navigation strategies meet each other in the navigation strategy
module, which is mostly responsible for choosing motor commands either from local or
global behaviours. Accordingly, it chooses the output from either the global navigation
strategy or local navigation strategy to generate motor control commands.

Real-time processing of artificial neural networks requires vast amounts of compu-
tational power, especially those algorithms that require real-time vision. Therefore, we
make use of distributed and decentralised processing. The robot onboard computer is
primarily responsible for robot control. At the same time we are making use of various
off-board computers in order to achieve the real time navigation. Each module in figure
2 can run on a different computer/CPU as a part of distributed architecture.

3.3 Overview of the Model Implementation

The focus of this paper is on robot localisation and therefore in this section we will
describe in detail the implemented models. It consists of a hierarchical series of five
layers of hybrid neural networks, corresponding to the transform invariance layers and
place code layer. Figure 4 shows the forward connections to individual layers derived
from the modular arrangement of the layers.

Local Navigation: Reactive Behaviour. A lot of recent research in intelligent robotics
involves reactive behaviour [13, 14]. In a reactive robot system, all sensors are wired
to the motor controls. This enables the motors to react on the sensory state. In these
systems internal representations play a limited role or no role at all in determining the
motor control output for the robot. Even though reactive behaviour robots do not have
an internal representation of the outside world, they are able to solve many complex
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tasks, since the robot can react to different sensory states in a different manner based
upon coordination of perception and action [15, 16].

As in biological systems, reactive behaviours have a direct mapping of sensory in-
puts to motors actions [11]. The reactive behaviour emerges as a result of SENSE and
ACT strongly coupled together. Sensing in reactive behaviour is local to each behaviour,
or in other words it is behaviour-specific. One behaviour is unaware of what the other
behaviour is doing, i.e. the behaviours are independent of each other and they do not
interact with each other. This is the fundamental difference between local and global
navigation strategies.

Our neural network design for reactive behaviour (figure 3) is based on Braiten-
berg’s Vehicle [17, 16], with eight infrared sensors forming the input layer. The inputs
were pre-processed to toggle the actual input between 0 and 1. The output layer had
two nodes, one connected to the left wheel, another to the right wheel and direction
was determined by the value of activation between -1 and 1: positive activation for the
forward direction and negative activation for backwards.

Avoid Motor Control

Collide

Infra Red
Forward

Turn

Distance
Determine

Halt

Fig. 3. Control system for robots reactive behaviour

Constructing a local navigation system by behaviours is often referred to as pro-
gramming by behaviour [11], since the fundamental component of any implementation
is a behaviour. Behaviours are inherently modular and easy to test in isolation i.e. they
can be tested independently of the global navigation. Behaviours also support incre-
mental expansion of the capabilities of the robot and a robot becomes more ”intelligent”
with more behaviours in it. The reactive behaviour decomposition results in an imple-
mentation that works in real time and is computationally inexpensive. If the behaviours
are implemented poorly, then the reactive implementation can be slow. But generally,
the reaction speed of a reactive behaviour is equivalent to the stimulus-response time in
animals [11].

Global Navigation and Self Localisation. The global navigation strategy is crucial for
how systems behave. Global navigation requires perception and motor skills in order to
provide complex sensor-motor integration enabling the system to reach its goal. The
global navigation strategy is the strategy which uses an internal representation, or map,
of the environment while local navigation does not make use of such representations
or maps. Many of these global planning methods are based on paths without obstacles
[18] and their main advantage is to prove the existence of a solution that will permit the
robot to reach its destination. Thus both reactive and deliberate planning are needed,
not only bottom-up reactive, but also top-down predictive behaviour.
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Fig. 4. Overview of the neural model that is being used in our experiments. Hybrid neural net-
works for localisation based on vision. The first part of the hybrid neural networks is associative
memory based on associative memory for invariance and higher layers are SOM for place codes
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Fig. 5. An overview of the localisation in our model. This is the overall implementation of the
localisation module as been before in figure 2. The image pre-processing is responsible for get-
ting the images from the robot camera and resizing. Then the associative memory is responsible
for image-invariant processing. Localisation of the robot is done by place codes. Visual Target
represents the main goal for the navigation. Spatial representation will take activations from both
the neural network regions and represent it in the environmental space

Although localisation has been investigated for more then a decade, there is still
no universally accepted solution [19]. Some general methods have been employed for
encoding prior knowledge of the environment and matching it with local sensor in-
formation. Some of the previous methods of localisation are (i) Topological Maps: the
environment is mapped into a number of distinct locations, usually connected with each
other [20]. Typically these maps are learned during the exploration stage. (ii) Evidence
grids [21]: in this method each location in the environment is represented by a grid
point in the global map. For localisation, the system constructs local grip maps with
occupancy probability for each grid point which are matched to the global map. (iii)
Markov Models: in this method of place code localisation the probability distribution is
computed for all possible locations in the environment [22]. (iv) Landmarking: in this
method the robot encodes a number of distinctive locations [23, 20, 24, 25, 2].
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Our method of localisation is based on landmarks. We use landmarks for localisa-
tion, mainly because this enables us to make internal representation of the environment
and does not involve human interference for determining the landmarks in the envi-
ronment. As the robot generates its own landmarks depending on the features in the
environment, we call it “Self-Localisation”. Our method of localisation is distinct from
other methods described above because there are not maps given to the robot and the
neural network creates an internal representation of the world based on the visual stim-
uli. This network is inspired from neural place codes, making the model more robust
and efficient.

4 Experiments and Results

Once the environment was learned by the robot, and when the landmarks were presented
to it, it could be seen clearly that the activation in the SOM’s map would represent a
place code. There were some interesting observations made, including that the land-
marks were not only self-generated, but also that when the robot starts to approach the
landmark there was activation in neighbouring fields before it reached it, as discussed
in section 4.5. Another observation was that the neuron responsible for the landmark
would have increasing levels of activation when it was approached by the robot.

4.1 Experimental Setup

The experiments were conducted on a Khepera robot. The robot was introduced in a
closed environment, as seen in figure 6 of about 2m x 1.5m, which was divided into
four parts: north, south, east and west. The environment was further divided into a grid
of 10 cm x 10 cm squares. This grid was only used for the purpose of calculation of
the error by the place cells. All the landmarks were placed against the wall of the cage.
There were cubes and pyramids of different colour codes spread across the walls of the
cage randomly. The walls also had randomly colour-coded figures on it.

Each square represents a place code. Each cell was given a name, depending on
where it was located, for example a cell in the southern part within the eastern part was
given name “se10”. The naming convection was simple; the first letter represents which
hemisphere, the second letter which block and the numbers indicate the x and y co-
ordinates. This information was purely for our use in order to test the results and set up
the experiments. This information was not provided to the robot. For training purposes
there were 4 images taken from each of the place codes. For testing there were 10 new
images from each place code in the environment.

4.2 Representation of Visual Input

It is more convenient to perform neural analysis on smaller versions of an image while
retaining all the essential information of interest, in our case to detect a landmark in an
image using neural networks. If the landmark is just as evident in the smaller image, it
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Fig. 6. The arena of the robot. The robot was allowed to moved in a limited space, as we did not
want it to be too close to, nor too far away from, the landmarks. The area of movement of the
robot was divided into smaller grids of 10cm x 10cm, giving us an approximate position of the
robot

is more efficient to reduce the image size before applying neural methods. Thus com-
putational time saving occurs as the smaller images contain fewer pixels and the recall
time for associative memory and self organising map is reduced, since the number of
the neurons is reduced.

There are number of techniques that can be used to enlarge or reduce images [26,
27, 28]. These generally have a tradeoff between speed and the degree to which they
reduce salient visual features. The simplest methods to reduce the image keep every nth

pixel. However, this results in aliasing of high frequency components. Therefore, a more
general case of changing the size of an image by a given factor requires interpolation
of colours. The simplest method is called “nearest neighbourhood”, which is currently
used by us. Using this method one finds the closest corresponding pixel in the original
image (i, j) for each pixel in the reduced image (i′, j′). If the original image has the
dimensions width (w) and height (h), and the reduced image would be of w′ and h′,
then the point in the destination is given by

i′ = iw′/w (3)
j′ = jh′/h (4)

where the division (equation 4) is a integer, the remainder being ignored. In other words,
in the nearest neighbour method of resizing, the output pixel is assigned the value of the
pixel that the point falls within. The number of pixels considered affects the complexity
of the computation.

Once the images are resized, they are arranged to a single dimension vector from a
two dimensional vector. All images were in 24 bit colour RGB (Red Green Blue)format
(equations 8), N represents the whole image.
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N = (aijk) ∈ A
3mn, i = 1, 2, . . . ,m j = 1, 2, . . . , n k = 1, 2, 3 (5)

R = (rij) ∈ A
mn, i = 1, 2, . . . ,m j = 1, 2, . . . , n rij := aij1 (6)

G = (gij) ∈ A
mn, i = 1, 2, . . . ,m j = 1, 2, . . . , n gij := aij2 (7)

B = (bij) ∈ A
mn, i = 1, 2, . . . ,m j = 1, 2, . . . , n bij := aij3 (8)

A is the set of possible pixel values. The values are between 0 and 255, and can be
represented as shown in 9.

A = {0, 1, 2, . . . , 255}, m = 17, n = 27 (9)

Each image was reduced to a size of 17 x 27. This image in turn was converted into
a single vector to be presented to the network. It was done as explained from equations
10 to 12.

A =

⎛
⎜⎜⎜⎝

a11 · · · a1n

a21 · · · a2n

...
. . .

...
am1 · · · amn

⎞
⎟⎟⎟⎠ Ai = (ai1, . . . , ain) i = 1, 2, . . . ,m (10)

V = (vl) := (A1, . . . , Am) ∈ A
mn l = 1, 2, . . . ,mn (11)

Equation 11 is a concatenation of Ai of A. In other words,

v(i−1)n+j := aij i = 1, 2, . . . ,m j = 1, 2, . . . , n (12)

4.3 Training and Testing Procedure

The stimuli used for training and testing our model are specially constructed to inves-
tigate the performance of localisation using the self organising maps. To train the net-
work, a sequence of 200 images was presented to represent over 20 landmarks. At each
representation the winning neuron was selected and the weight vector of the winning
neuron was updated along with the distance vector. The presentation of all the stimuli
across all the landmarks consists of one epoch of training. In this manner the networks
were trained using backpropagation in Multi-Layered Perceptrons. Invariance and the
place code networks were trained separately.

Table 1. Training and Testing procedure

Training Testing
No. of Images 200 485

No. of Epoch (Invariance) 1800 -
No. of Epoch (Place Code) 3000 -
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4.4 Results for Transform Invariance

This method of representation shows promise, although it is not ideal for invariance
such as size, view etc. It is observed that, compared to the traditional template match-
ing methods, it is computationally and memory efficient. After the neural networks
memorised the various landmarks, and after a new image has been given at the retina,
our method finds the image nearest to the image previously memorised.

The main purpose of transform invariance was to reconstruct the image that was
on the retina for the SOM. It was seen that due to this process of reconstructed im-
ages, we could also achieve a certain degree for independence from light conditions.
The independence of this was achieved due to the generalisation feature of neural net-
works, which would generalise the effect of light over various colours in the recon-
structed image. Transform invariance has improved the performance of place codes
based on SOMs in various way, and the results will be described in sections 4.5.
and 4.6.

4.5 Discussion of Results for SOMs Place Codes

Activation Activity of a Neuron. When an animal approaches a desired landmark,
the place cells representing the landmark increase activation and, when the animal is
at that the desired landmark, the activation is maximum. This property is observed in
biological place cells and has been discussed in 1.1.

To show that our model also follows the same principles of biological place cells,
we have taken readings of activation of various neurons and we are presenting here
activation levels of a neuron responsible for different place codes. In figure (7) we can
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Fig. 7. This figure shows activation levels and activity for a single place cell. As the robot ap-
proaches the place code, the activation rises and when the robot is at the location represented by
the place cell the activation is maximum
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see that when the robot starts to approach the landmark, there is a sudden steep rise in
the activation of the neuron responsible. As the robot gets closer, the activation keeps
on rising, until it is at the desired landmark. Once there, the activation is 1. As the robot
moves away from the desired landmark, there is a gradual fall in the activation of the
neuron, and as soon as the landmark is out of sight of the robot, the activation is set to
0. This is shown in figure 7.

Activation Activity of a Place Code Cluster. Another property of place cells is that
when the animal is approaching the desired landmark, the neighbouring neurons would
also be active as described in section 1. These results are shown in figure 8. It is seen
that when the robot is within a region there is a cluster of place codes responding to
the robot’s location. In section 4.6, we will see the advantages of having clusters of
place cells for noise handling. The activation in the cluster provides us the robot’s grid
location. Each neuron within the cluster provides us with a more precise location of the
robot, within 2cm of precision.

Clustering of Place Codes. The basic property of a SOM network is to form clusters
of information relating to each other, in our case landmarks. A cluster is a collection of
neurons which are next to each other representing the same landmark. Figure 8 shows
that when the robot was approaching the desired landmark, there were activations in the
neighbouring neurons. This is due to clustering of similar images around the landmark.
There are multiple similar images that are being represented by a single neuron, mak-
ing the cluster smaller and richer in information. This is achieved with the invariance
module.

On the other hand, figure 8(c) shows the landmarks which were at a distance to the
location represented in figure 8(d). Two landmarks that were given to the robot at a
distance would be mapped not only into different clusters, but also distant from each
other. By their very definition, landmarks are features in the environment. This was the
reason behind a formation of these clusters by SOMs. The landmarks that were chosen
by the SOM were quite significant in the image and distinguished features from the rest
of the environment, and other landmarks.

Distinction Between North and South. We have observed that there is a clear dis-
tinction between the north and the south on the place code map. Figure 9(a) shows all
the neurons that are responsible for landmarks in the north and figure 9 (b) represents
the neurons responsible for the south. The reason for this distinction is that the field of
view is quite different in both hemispheres. It has been observed that in the northern
hemisphere the object of attention for the landmark selection was very much limited to
an object in the field of view. In contrast, in the southern hemisphere, the robot had a
much larger field of view, therefore the object of attention was not focused only on a
single object, but on various objects.

Overlap of East and West in the South Section. In the north it was observed that
there was a clear distinction between the east and west, whereas in the south, there is
overlap. The overlap was caused by the field of view of the robot retina. From the south
section of the cage, the robot is able to see more landmarks than in the north section.
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Fig. 8. Each of the graph shows activation of winning neurons. It is seen in the images that neigh-
bouring regions in environment are neighbours to each other on the place code map. There is also
a clear overlap of a neuron in both regions. The reason for the overlap is because in the field of
view of the robot between both locations, both prominent landmarks can be seen

After small movements in the north, the object of attention changes, whereas in the
southern hemisphere there are various objects of attention that lie in the field of view.
Therefore, minor movements in the southern hemisphere, do not lead to drastic changes
in the visual field. The overlap is caused by landmarks which are nearer the borders of
east and west.

Directional Independence. It was clearly observed that the model was directionally
independent. It was seen that in whichever direction the robot travelled within the en-
vironment, as it came across the landmark, it would activate the place cells responsible
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Fig. 9. The various activations of neurons that represent landmarks in the northern and southern
hemisphere. We can also see that they are not topological
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Fig. 10. There is a clear overlap of the regions in the (a) south-eastern and (b) south western. The
overlap is due to the sharing of landmarks between both the regions

for the landmark. Therefore it did not matter in which direction the robot travelled; it
could localise itself as soon as it came across a significant landmark.

For testing purposes, the model was presented with random images with different
landmarks. It was even seen that once the landmark was seen, the place cell responsible
for it would be activated.
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Fig. 11. In the images above, there is a clear distinction between the (a) north eastern and (b)
northwestern. The reason for this is that the field of view here is restricted to a particular landmark

Manipulating the Landmarks. There were two experiments that were conducted for
testing robustness with the robot. In the first experiment, we removed two blocks from
eastern part and blocks from western part randomly. It was observed that when the robot
was in the northern hemisphere and came across the missing blocks, it would activate
an unknown cluster or completely wrong neuron. This happened because the field of
view within the northern hemisphere is very limited to one or two objects. So, when the
blocks were removed, the environment was not rich enough to provide the robot with
enough clues as to where it was, but as soon as the robot came across a known land-
mark, it localised itself again. This was not observed in the southern hemisphere. The
southern hemisphere visual field was large, hence the removal of blocks did not affect
the activations of neurons. The visual field was rich enough to provide the necessary
clues to localise.

In the second experiment, the blocks that were removed were now replaced, but not
in their original positions. It was observed that the activations in the southern hemi-
sphere were still representing the right location. In the northern hemisphere, the activa-
tions were not in the unknown cluster, but for the neurons representing those landmarks.

Reduction in Cluster Size. It was observed in [23], that the main cause for large clus-
ters of place codes was due to the SOM trying to handle transform invariance by hav-
ing the neighbouring neurons responding to the invariance. With the use of associative
memory for transform invariance, the size of the clusters was reduced. In the present
model, the SOM does not represent the invariance, rather it represents the place codes.
Images were collected at every 10th frame i.e. approximately half a second between
images. This causes large amounts of overlap and large amounts of transform invari-
ance. The associative memory clustered the similar images and reduced the transform
invariance. The number of neurons per location reduced, since there were fewer neurons
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Fig. 12. The cluster sizes i.e. number of neurons per cluster representing a particular location of
the robot. It is seen that There is a drastic reduction in the size of the clusters after the use of
autoassociative memory before the place code map. This makes it possible for us to have more
place code on the same size of the map

required to represent the same location if there was a shift in the images. This also has
additional benefits, mainly now SOM can represent more place codes without actually
growing or increasing the size of the map.

4.6 Performance of Network

To test the performance of the network, we tested it with white noise with a mean noise
ranging from 0.0 to 0.8 and variance of 0.01 to the image. The effects of the noise on
the images can be seen in figure 13. The aim of the neural network is to localise the
robot within its environment, based on the internal representations it has formed. As the
place cells are based on SOMs, there is a cluster of neurons responsible for a place code
in the environment. The neuron representing that place code would be more accurate
then the neighbouring neurons. To have a more precise localisation, we need the neuron
responding to the place to be active.

There are various reasons where we would need an approximate localisation. It was
noted that with the increasing noise, it was more likely for the robot to be ‘lost’ (unable
to localise itself) [23]. During these times, approximate coordinates would help the
robot to localise itself. We consider two options for localisation with noise handling:
one being that a neuron responsible for the robot response and another being another
neuron in the cluster of neurons responding for the same place responding. In the later
case, localisation may not be very accurate.
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(a) (b) (c)

Fig. 13. Effects of different noise levels added to the image. (a) Image without any noise. (b)
Image with 0.2 mean deviation (c) Image with 0.5 mean deviation
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Fig. 14. This figure shows the noise handling by the network, with transform invariance, based on
associative memory, and also without transform invariance. It shows that the network performs
much better with transform invariance

As seen in figure 14, the clusters are more robust than the neurons with regard to
noise handling. As the amount of noise increases, the neurons or cluster response to
localisation becomes more random. However the network performance is quite impres-
sive until 0.5 mean deviation of noise where the error for localisation is below 30%.
The cluster for a place codes still performs much better and is still below 20%.

Noise handling by the neural networks was also improved by adding an additional
layer of associative memory below the place codes. The associative memory reduces
the noise before the outputs are given to the place codes layer in the architecture. It can
be seen in figure 14 that associative memory helps place cells to perform better, giving
less error per neuron.
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It was also noted that as the noise level increased, the performance of the network
decreased along with associative memory. This was mainly seen for localisations where
higher levels of noise were present. With noise of 70%, the performance was not signif-
icantly different, with or without associative memory. At higher levels of noise of more
than 80% the noise handling of the associative memory failed, making the place codes
performance performs worse than without the layer. At can be expected, with 80% noise
level, the performance of the SOMs is completely random to get the right localisation.

For our experiments we were not expecting more than 30% of noise levels. Since this
would mostly be caused by interference in wireless signals. Even if the noise levels for
a few frames is more then 30%, it would be possible for the robot to localise itself with
the following input frames. With the use of the associative memory, the performance up
to 30% noise level improved substantially.

5 Conclusion

The aim of this research, was to investigate whether the reliability of robot localisation
can be improved using SOMs based on place codes. In this paper we have described a
place cell model based on a SOM for localisation. The model was successful in learning
the locations of landmarks even when tested with distorted images. Visual landmarks
were associated with locations in a controlled environment. This model clusters neigh-
bouring landmarks next to each other. The landmarks that are distant from each other are
also relatively distant in the place code map. Rather than pre-programming localisation
algorithms as internal modules, our place code based SOMs architecture demonstrates
that localisation can be learnt in a robust model based on external hints from the envi-
ronment. This model was developed to learn landmarks in an environment, by having
maps divided into clusters of neurons for different parts of the environment. It is con-
sidered to have a lot of potential for learning the localisation of the robot within an
environment.
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Abstract. Using associative memories and sparse distributed represen-
tations we have developed a system that can learn to associate words
with objects, properties like colors, and actions. This system is used in
a robotics context to enable a robot to respond to spoken commands
like ”bot show plum” or ”bot put apple to yellow cup”. This involves
parsing and understanding of simple sentences and “symbol grounding”,
for example, relating the nouns to concrete objects sensed by the camera
and recognized by a neural network from the visual input.

1 Introduction

When words referring to actions or visual scenes are presented to humans, dis-
tributed networks including areas of the motor and visual systems of the cortex
become active (e.g. [1]). The brain correlates of words and their referent actions
and objects appear to be strongly coupled neuronal assemblies in defined cor-
tical areas. The theory of cell assemblies [2, 3, 4, 5, 6] provides one of the most
promising frameworks for modeling and understanding the brain in terms of
distributed neuronal activity. It is suggested that entities of the outside world
(and also internal states) are coded in groups of neurons rather than in sin-
gle (”grandmother”) cells, and that a neuronal cell assembly is generated by
Hebbian coincidence or correlation learning [7, 8] where the synaptic connec-
tions are strengthened between co-activated neurons. Thus models of neural
(auto-)associative memory have been developed as abstract models for cell as-
semblies [9].

One of our long-term goals is to build a multi-modal internal representation
for sentences and actions using cortical neuron maps, which will serve as a basis
for the emergence of action semantics and mirror neurons [10, 11, 12]. We have

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 107–117, 2005.
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developed a model of several visual, language, planning, and motor areas to
enable a robot to understand and react to spoken commands in basic scenarios
of the MirrorBot project [11, 12, 13, 14] that is described in the first part of this
book. The essential idea is that different cortical areas represent different aspects
(and correspondingly different notions of similarity) of the same entity (e.g.,
visual, auditory language, semantical, syntactical, grasping related aspects of an
apple) and that the (mostly bidirectional) long-range cortico-cortical projections
represent hetero-associative memories that translate between these aspects or
representations. This involves anchoring symbols such as words in sensory and
motor representations where invariant association processes are required, for
example recognizing a visually perceived object independent of its position, color,
or view direction. Since word symbols usually occur in the context of other words
specifying their precise meaning in terms of action goals and sensory information,
anchoring words is essentially equivalent to language understanding.

In this work we present a neurobiologically motivated model of language
processing based on cell assemblies [2, 3, 4, 5]. We have developed a system that
can learn to associate words with objects, properties like colors, and actions.
This system is used in a robotics context to enable a robot to respond to spoken
commands like ”bot show plum” or ”bot put apple to yellow cup”. The scenario
for this is a robot close to one or two tables on which there are certain kinds
of fruit and/or other simple objects. We can demonstrate part of this scenario
where the task is to find certain fruits in a complex visual scene according to
spoken or typed commands. This involves parsing and understanding of simple
sentences and relating the nouns to concrete objects sensed by the camera and
recognized by a neural network from the visual input.

In the first section we outline the concept of cell assemblies as a model for
sequential associative processing in cortical areas and how our model is related to
discrete finite automates and sequence detector networks by Pulvermüller [1, 15],
also explained in this book [16]. Then we briefly describe our robot architecture
used for implementing simple scenarios of associating words to objects, and detail
the language module. Finally, we summarize and discuss our results.

2 Language and Cell Assemblies

A large part of our model is based on associative memory and cell assemblies.
Anchoring a symbol first requires understanding the context in which the sym-
bol occurs. Thus, one requirement for our system is language processing and
understanding.

2.1 Regular Grammars, Finite Automates, and Neural Assemblies

Noam Chomsky developed a hierarchy for grammar types [17, 18]. For example,
a grammar is called regular if the grammar can be expressed by rules of the type

A → a

B → bC
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Fig. 1. Comparison of a deterministic finite automaton (DFA, left side) with a neural
network (right side) implementing formal language. Each δ transition δ(zi, ak) = zj

corresponds to synaptic connections from neuron Ci to Cj and from input neuron Dk

to Cj (see text for details)

where lower case letters are terminal symbols (i.e. elements of an alphabet Σ),
and upper case letters are variables. Usually there is a starting variable S which
can be expanded by applying the rules. A sentence s ∈ Σ∗ (which is a string of
alphabet symbols of arbitrary length) is called valid with respect to the grammar
if s can be derived from S by applying grammatical rules and resolving all
variables by terminal symbols.

There are further grammar types in the Chomsky hierarchy which correspond
to more complex rules, e.g. context-free and context-sensitive grammars, but here
we will focus on regular grammars. It is easy to show that regular grammars are
equivalent to deterministic finite automata (DFA). A DFA can be specified by
M = (Z,Σ, δ, z0, E) where Z = {z0, z1, ..., zn} is the set of states, Σ is the al-
phabet, z0 ∈ Z is the starting state, E ⊆ Z contains the terminal states, and the
function δ : (Z,Σ) → Z defines the (deterministic) state transitions. A sentence
s = s1s2...sn ∈ Σ∗ is valid with respect to the grammar if iterated application
of δ on z0 and the letters of s transfers the automaton’s starting state to one of
the terminal states, i.e., if δ(...δ(δ(z0, s1), s2), ..., sn) ∈ E (cf. left side of Fig. 1).

In the following we show that DFAs are equivalent to binary recurrent neu-
ral networks such as the model architecture described below (see Fig. 3). As
an example, we first specify a simpler model of recurrent binary neurons by
N = (C, I, W, V, c0), where C = {C0, C1, ..., Cn} contains the local cells of the
network, D = {D1, D2, ..., Dm} is the set of external input cells, W = (wij)n×n

is a binary matrix where wij ∈ {0, 1} specifies the strength of the local synaptic
connection from neuron Ci to Cj , and, similarly, V = (vij)m×n specifies the
synaptic connections from input cell Di to cell Cj . The temporal evolution of
the network can be described by

ci(t + 1) =
{

1, if
∑

j wjicj(t) +
∑

j vjidj(t) ≥ Θi

0, otherwise.

where ci(t) is the output state of neuron Ci at time t, and Θi is the threshold
of cell Ci. Figure 1 illustrates the architecture of this simple network.
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The network architecture can easily be adapted to simulate a DFA. We iden-
tify the alphabet Σ with the input neurons, and the states Z with the local
cells, i.e. each ai ∈ Σ corresponds to input cell Di, and, similarly, each zi ∈ Z
corresponds to a local cell Ci. Then we can specify the connectivity as follows:
Synapses wij and vkj are active if and only if δ(zi, ak) = zj for the transi-
tion function δ of the DFA (see Figure 1). In order to decide if a sentence
s = ai(0)ai(1)ai(2)... is valid with respect to the language we can specify the
activation of the input units by di(t) = 1 and dj = 0 for j �= i(t). By choos-
ing threshold Θi = 2 and a starting activation where only cell c0 is active, the
network obviously simulates the DFA. That means, after processing of the last
sentence symbol, one of the neurons corresponding to the end states of the DFA
will be active if and only if s is valid.

To be precise, the above algorithm represents a slight oversimplification.
In this implementation it might happen that the next state is not determined
uniquely. To avoid this problem it would be sufficient to use states representing
pairs (zi, ak) of a state zi and an action ak leading to it. Then the synapses
from (zi, al) to (zj , ak) and from ak to (zj , ak) are activated for the transition
δ(zi, ak) = zj .

The described neural network architecture for recognizing formal languages
is quite simple and reflects perfectly the structure of a DFA even on the level
of single neurons. In addition, this network is also very similar to the network
of sequence detectors discussed in [15, 16]. Essentially an elementary sequence
detector can be identified with a 3-state automaton, where the sequence ab is
identified by two transitions from an initial state z0 into a final state z2 as de-
picted in the left part of figure 2. The resulting network (depicted in the right
part of figure 2) resembles the sequence detector idea of Pulvermüller ([1, 15])
and they obey the same underlying principle: Pulvermüller’s simplest linear se-
quence detector (e.g. for ab) needs a weak input for a followed by a strong input
for b. This works because the strong input decays faster then the weak input
(in absolute terms; in relative terms they both decay exponentially fast). Thus
Pulvermüller’s idea works whenever the second input b decays faster than the
first input a. This makes the sequence ab more effective than ba, because more
activity is left from a when b occurs, than vice versa. This simple principle also
holds for an automaton (see figure 2) and the corresponding network, because a
feeds back onto itself (it is an auto-associative assembly) and therefore is more

Fig. 2. Identification of an elementary sequence detector representing the sequence
ab with a 3-state automaton. Left: schematic diagram, right: neural implementation,
where → means excitation and � means inhibition
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persistent than b. Ideally, this scheme works for arbitrary delays between a and
b, in contrast to Pulvermüller’s simple sequence detector that only works for a
small range of delays ([16]). The idea of using auto-associative persistent pat-
terns with different persistency in different areas is used extensively in the model
derived in the next section. Also the sequencing or automaton idea is used at
least in one area (A4, see figure 3), where both auto-associative memories stabi-
lizing individual patterns and hetero-associative memories representing patterns
sequences are stored in the same local network.

Coming back to the cell assembly perspective, clearly a network as in figure 1
or 2, where single neurons are used to code the different states, is biologically
not very realistic, since, for example, such an architecture is not robust against
partial destruction and it is not clear how such a delicate architecture could be
learned. The model becomes more realistic if we interpret the nodes in figure 1
or figure 2 not as single neurons but as groups of nearby neurons which are
strongly interconnected, i.e., as local cell assemblies. This architecture has two
additional advantages: First, it enables fault tolerance since incomplete input
can be completed to the whole assembly. Second, overlaps between different
assemblies can be used to express similarity, hierarchical and other relations
between represented entities. In the following subsection we briefly describe a
model of associative memory which allows to implement the assembly network
analogously to the network of single neurons in figure 1 or 2.

2.2 Cell Assemblies and Neural Associative Memory

We decided to use the Willshaw associative memory [19, 20, 4, 21, 22, 23] as a
single framework for the implementation of cell assemblies in cortical areas. A
cortical area consists of n binary neurons which are connected with each other
by binary synapses. A cell assembly or pattern is a binary vector of length n
where k one-entries in the vector correspond to the neurons belonging to the
assembly. Usually k is much smaller than n. Assemblies are represented in the
synaptic connectivity such that any two neurons of an assembly are bidirection-
ally connected. Thus, an assembly consisting of k neurons can be interpreted
as a k-clique in the graph corresponding to the binary matrix A of synaptic
connections. This model class has several advantages over alternative models of
associative memory such as the most popular Hopfield model [24]. For example,
it better reflects the cortical reality where it is well known that activation is
sparse (most neurons are silent most of the time), and that any neuron can have
only one type of synaptic connection (either excitatory or inhibitory).

Instead of classical one-step retrieval we used an improved architecture based
on spiking associative memory [25, 13]. A cortical area is modeled as a local pop-
ulation of n neurons which receive input from other areas via Hebbian learned
hetero-associative connections. In each time step this external input initiates pat-
tern retrieval. The neurons receiving the strongest external input will fire first,
and all emitted spikes are fed back immediately through the Hebbian learned
auto-associative connections resulting in activation of single assemblies. In com-
parison to the classical model, this model has a number of additional advantages.
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For example, assemblies of different size k can be stored, and input superposi-
tions of several assemblies can more easily be separated.

In the following section we present the architecture of our cortical model
which enables a robot to associate words to visually recognized objects, and
thereby anchoring symbolic word information in sensory data. This model con-
sists of a large number of interconnected cortical areas, each of them implemented
by the described spike counter architecture.

3 Cell-Assembly Based Model of Cortical Areas

We have designed a cortical model consisting of visual, tactile, auditory, lan-
guage, goal, and motor areas (see figure 3), and implemented parts of the model
on a robot. Each cortical area is based on the spike counter architecture described
in the previous section. The model is simulated synchronously in discrete time
steps. That means, in each time step t each area computes its output vector
y(t) as a function of the output vectors of connected areas at time t − 1. In
addition to the auto-associative internal connection within each area there are
also hetero-associative connections between theses areas (see figure 4).

3.1 Overall Architecture

Figure 3 illustrates the overall architecture of our cortical model. The model
consists of auditory areas to represent spoken or typed language, of grammar
areas to interpret spoken or typed sentences, visual areas to process visual in-
put, goal areas to represent action schemes, and motor areas to represent motor
output. Additionally, we have auxiliary areas or fields to activate and deacti-
vate the cortical areas (activation fields), to compare corresponding represen-
tations in different areas (evaluation fields), and to implement visual attention.

Fig. 3. Cortical architecture involving several inter-connected cortical areas corre-
sponding to auditory, grammar, visual, goal, and motor processing. Additionally the
model comprises evaluation fields and activation fields (see text)
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e.g., "Bot show plum!"
auditory input,
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Fig. 4. The language system consisting of 10 cortical areas (large boxes) and 5 thala-
mic activation fields (small black boxes). Black arrows correspond to inter-areal con-
nections, gray arrows within areas correspond to short-term memory

Each small white box corresponds to an associative memory as described in
the previous section. The auditory areas comprise additional neural networks
for processing of acoustic input, i.e. they perform basic speech recognition. The
main purpose of the visual fields is to perform object recognition on the camera
image.

Currently, we have implemented most parts of the model on a robot. The
object recognition system basically consists of three components:

1. The visual attention control system localizes the objects of interest based
on an attention control algorithm using top-down information from higher
cortical areas.

2. The feature extraction system analyzes a window taken from the camera im-
age corresponding to the region of interest. Scale and translation invariance
is achieved by rescaling the window and using inherently invariant features
as input for the classification system. The extracted features comprise local
orientation and color information.

3. The classification system uses the extracted features as input to a hierar-
chical neural network which solves the classification task. The basic idea
of using hierarchical neural networks is the division of a complex classifi-
cation task into several less complex classification tasks by making coarse
discrimination at higher levels of the hierarchy and refining the discrimi-
nation with decreasing depth of the hierarchy. Beneficial side effects of the
hierarchical structure are the possibility to add additional classes quite easily
at run-time, which means that the system will be able to learn previously
untrained objects online, and the possibility to investigate the classification
task at intermediate states. The latter can be useful if, for example, the full
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classification information is not needed for the task at hand, or simply to
gain more insight in the performance of the network.

For a more detailed description of the whole model, see [11] in this book.
For additional detailed information on the object recognition system see for
example [26].

3.2 Language Processing

Figure 4 gives an overview of our model for cortical language processing. It ba-
sically implements a sequence detector network or DFA for a previously defined
regular grammar (as in figure 1). The system presented here can understand
simple sentences like ”bot show red plum” or ”bot lift apple”.

Areas A1, A2 and A3 are primary auditory areas, A1 represents auditory
input by primary linguistic features, whereas area A2 and A3 classify the input
with respect to function and content, respectively. Areas A2 and A3 serve as
input areas to the sequence detector circuit.

Essentially, areas A4 and A5-X implement the DFA. The sequence detector
network is split into several areas to enable the model to keep track of the path of
states the automaton took to achieve the final state. This leads to a very useful
representation of the parsed sentence in the end where each of the areas A5-X
is filled with one word in one special grammatical context (e.g. A5S holds the
subject of the sentence). Further interpretation of the semantics of the sentence
then becomes relatively easy ([11] shows how our model for action planning uses
this information).

Areas A5-X stores the state (zi) the automaton has reached, together with
the input (ak) leading to that state. In our example, the inputs ak are words and
the states basically reflect the grammatical role of the input word in the sentence.
The A5-X areas are used to explicitly store the input words ak that lead to their
activation. They implicitly store the grammatical context, because subjects will
be stored in area A5S, predicates in A5P and so on. This corresponds to storing
the pairs (zi, ak) for each state of the automaton.

The possible state transitions are stored in area A4. Hetero-associative feed-
back connections with longer delay from area A4 onto itself represent the possible
state transitions, the current state is kept persistent by auto-associative feedback
with short delays. To perform a state transition, the whole area A4 is inhibited
for a short while, eliminating the effect of the auto-associative feedback. Because
of the longer delay, the hetero-associative connection will still be effective if the
inhibition is released. Biased by the new input pattern, it will then switch to the
next state according to the next input symbol.

Area A4 only represents the state transition matrix; the usage of pairs in A4
is not necessary in this model because the required information is represented in
areas A5-X, which all project onto area A4 making the state transitions unique.

Figure 5 shows the state of the system after processing the input sequence
“bot put plum (to) green apple”, where “to” does not belong to the actual input
sequence due to simplification of the grammatical rules. The input sentence is
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Fig. 5. System state of the language model after 30 simulation steps when processing
the sentence “Bot put plum to green apple”. (Processing of a word requires about 5-6
steps on average; during each simulation step the state of the associative network is
synchronously updated)

segmented into subject, predicate and the two objects, and the automaton will
reach its final state when the input “apple” disappears and a symbol for the end
of the input sentence will be activated in area A1 and A2.

4 Conclusion

We have presented a cell assembly based model for cortical language process-
ing that can be used for associating words with objects, properties like colors,
and actions. This system is used in a robotics context to enable a robot to
respond to spoken commands like ”bot put plum to green apple”. The model
shows how sensory data from different modalities (e.g., vision and speech) can be
integrated to allow performance of adequate actions. This also illustrates how
symbol grounding could be implemented in the brain involving association of
symbolic representations to invariant object representations.

Although we have currently stored only a limited number of objects and sen-
tence types, it is well known for our model of associative memory that the number
of storable items scales with (n/ log n)2 for n neurons [19, 20, 21]. However, this is
true only if the representations are sparse and distributed which is a design prin-
ciple of our model. As any finite system, our language model can implement only
regular languages, whereas human languages seem to involve context-sensitive
grammars. On the other hand, also humans cannot “recognize” formally correct
sentences beyond a certain level of complexity.

The neural implementation of this language understanding system not only
shows that this comparatively intricate logical task can be mastered by a neural
network architecture in real time, it also gives some additional advantages in
terms of robustness and context-awareness. Indeed, we have shown at the Neu-
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roBotics Workshop [11, 12] that this system can correct ambiguous input on the
single word level due to the context of the whole sentence and even the complete
sensory-motor situation.

For example the sentence “bot lift bwall” with an ambiguous word between
“ball” and “wall” is correctly interpreted as “bot lift ball”, because a wall is not
a liftable object. Similarly, a sentence like “bot show/lift green wall” with an
artificial ambiguity between “show” and “lift”, can be understood as “bot show
green wall”, even if the disambiguating word “wall” comes later and even across
an intermittent word (“green”). Similarly the language input could be used to
disambiguate ambiguous results of visual object recognition, and vice versa.

This demonstrates the usefulness of a close interplay between symbolic and
subsymbolic information processing (also known as “symbol grounding”) in au-
tonomous robots, which can be easily achieved by biologically inspired neural
networks.
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Abstract. We have implemented a neurobiologically plausible system
on a robot that integrates visual attention, object recognition, language
and action processing using a coherent cortex-like architecture based on
neural associative memories. This system enables the robot to respond
to spoken commands like ”bot show plum” or ”bot put apple to yellow
cup”. The scenario for this is a robot close to one or two tables carrying
certain kinds of fruit and other simple objects. Tasks such as finding and
pointing to certain fruits in a complex visual scene according to spoken
or typed commands can be demonstrated. This involves parsing and
understanding of simple sentences, relating the nouns to concrete objects
sensed by the camera, and coordinating motor output with planning and
sensory processing.

1 Introduction

Detecting and identifying objects as well as processing language and planning
actions are essential skills for robots performing non-trivial tasks in real world
environments. The combination of object recognition, language understanding
and information processing therefore plays an important role when developing
service robots. We have implemented a neurobiologically inspired system on a
robot that integrates visual attention, object recognition, language and action
processing using a coherent cortex-like architecture based on neural associative
memories (cf. [1]). Neural networks and associative memories which are both
neurobiologically plausible and fault tolerant form the basic components of the
model. The model is able to handle a scenario where a robot is located next to
one or two tables with different kinds of fruit and other simple objects on them
(cf. figure 4). The robot (”bot”) is able to respond to spoken commands such
as ”bot show plum” or ”bot put apple to yellow cup” and to perform tasks like
finding and pointing to certain fruits in a complex visual scene according to a
spoken or typed command. This involves parsing and understanding of simple
sentences, relating the nouns to concrete objects sensed by the camera, and
coordinating motor output with planning and sensory processing.

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 118–143, 2005.
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The underlying cortical architecture is motivated by the idea of distributed
cell assemblies in the brain [2][3]. For visual preprocessing we use hierarchically
organized radial-basis-function networks to classify objects selected by atten-
tion, where hidden states in this hierarchical network are used to generate sparse
distributed cortical representations. Similarly, auditory input pre-processed by
standard Hidden-Markov-Model architectures can be transformed into a sparse
binary code for cortical word representations. In further cortical areas for lan-
guage and action the sensory input is syntactically and semantically interpreted
and finally translated into motor programs. The essential idea behind the cor-
tical architecture is that different cortical areas represent different aspects (and
correspondingly different notions of similarity) of the same entity (e.g., visual,
auditory language, semantical, syntactical or grasp-related aspects of an ap-
ple) and that the (mostly bidirectional) long-range cortico-cortical projections
represent hetero-associative memories that translate between these aspects or
representations. These different notions of similarity can synergistically be used,
for example, to resolve ambiguities within or across sensory modalities.

2 Architecture

Our architecture can roughly be divided into two large parts: (1) Sensory prepro-
cessing and (2) cortical model. In the preprocessing part features are extracted
from auditory and visual input selected by attention control. For the cortical
model several different neural architectures are used. For object recognition and
speech processing more artificial neural networks such as radial-basis-function
networks are utilized, while a biologically more plausible architecture of many
interconnected neural associative memories is used to model cortical informa-
tion processing. Figure 1 shows the different components of our model, their
interactions and the division into two parts.

For the implementation of cortical cell assemblies [4][5][6][7][8][9], we decided
to use the Willshaw model of associative memory as an elementary architectural
framework. A cortical area consists of n binary neurons which are connected
with each other by binary synapses. A cell assembly or pattern is a sparse binary
vector of length n where k one-entries in the vector correspond to the neurons
belonging to the assembly. Usually k is much smaller than n. Assemblies are rep-
resented in the synaptic connectivity such that any two neurons of an assembly
are bidirectionally connected. Thus, an assembly consisting of k neurons can be
interpreted as a k-clique in the graph corresponding to the binary matrix A of
synaptic connections. This model class has several advantages over alternative
models of associative memory such as the most popular Hopfield model [10]. For
example, it better reflects the cortical reality where it is well known that activa-
tion is sparse (most neurons are silent most of the time), and that any neuron
can have only one type of synaptic connection (either excitatory or inhibitory).

Instead of classical one-step retrieval we used an extended algorithm based on
spiking associative memory [11][12]. A cortical area is modeled as a local neuron
population which receives input from other areas via hetero-associative Hebbian
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Fig. 1. The architecture is roughly divided into two parts: Sensory preprocessing and
cortical model

Fig. 2. Interaction of the different areas of the cortical model (v : visual, l : location, f :
contour features, o: visual objects, h: haptic / proprioceptive, p: phonetics, s: syntactic,
a: action / premotoric, g: goals / planning) and their rough localization in the human
brain

synaptic connections. In each time step this external input initiates pattern re-
trieval. The neurons receiving the strongest external input will fire first, and all
emitted spikes are fed back immediately through the auto-associative Hebbian
synaptic connections which allows both the activation of single assemblies and
the representation of superpositions. In comparison to the classical model, this
model has a number of additional advantages. For example, assemblies of dif-
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Fig. 3. Cortical architecture involving several inter-connected cortical areas corre-
sponding to auditory, grammar, visual, goal, and motor processing. Additionally the
model comprises evaluation fields and activation fields (see text)

ferent size k can be stored, input superpositions of several assemblies can more
easily be separated, and it is possible to transmit more subtle activation patterns
(e.g., about ambiguities or superpositions) in the spike timing.

As already shown in figure 1, our cortical model divides into four main parts.
Some of those again are quite complex tasks that may, considering the situ-
ation in the human brain, involve some different cortical areas. In figure 2, a
rough overview of the cortical areas that are somehow reflected in our system is
given. The interconnections shown there correspond to the flow of information
we realized in our model.

Figure 3 illustrates the overall architecture of our cortical model. Each box
corresponds to a local neuron population implemented as spiking associative
memory. The model consists of phonetic auditory areas to represent spoken lan-
guage, of grammar related areas to interpret spoken or typed sentences, visual
areas to process visual input, goal areas to represent action schemes, and motor
areas to represent motor output. Additionally, we have auxiliary areas or fields
to activate and deactivate the cortical areas (activation fields), to compare cor-
responding representations in different areas (evaluation fields), and to direct
visual attention. The primary visual and auditory areas are part of sensory pre-
processing and comprise additional (artificial) neural networks for processing of
camera images and acoustic input.

The suggested approach is implemented on the PeopleBot base by ActivMe-
dia. To integrate the implemented functionality on the robot we used Miro [13],
a robot middleware framework that allows control of the robot’s hardware and
facilitates communication with other programs by using Corba. Miro supports
distributed computing, i.e. time consuming calculations with low i/o-rates can
be outsourced to other computers. Miro also facilitates the usage of the same
application on different robot platforms. Hence the software developed here runs
on the PeopleBot as well as on other robot bases.
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Fig. 4. In the test scenario the robot is situated in front of a table. Different objects
are laying on this table. The robot has to grasp or point to specified objects

3 Sensory Preprocessing

The object classification is performed in three stages, i.e. the system consists of
three components which are activated consecutively. First objects of interests are
to be localized within the robot’s camera image. Since neither the camera image
contains solely the object of interest but also background as well as possible other
objects nor is it guaranteed that the object is located in the center of the image,
it is necessary to perform a pre-processing of the image. In the course of this pre-
processing a demarcation of the objects from the background and from each other
as well as a localization of the objects takes place. For this a color-based visual
attention control algorithm is used to find regions of interests within the camera
images. These regions contain objects to be classified. Once the objects are
localized, characteristic features like orientation histograms or color information
are extracted, which should be invariant to lighting conditions. In order to save
computing time the features are not extracted from the entire image but only
from the region of interest containing the object. These features are used to
classify the localized objects one after the other. Due to the fact that the objects
are centered within the regions of interest, the extracted features are made shift
and scaling invariant. This yields improved classification results. The fact that
in a first step meaningful objects are separated from meaningless background
further improves the classification. Moreover, this accounts for invariance of the
classification regarding background conditions. An overview of the whole process
is shown in figure 5.
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Fig. 5. The classification system consists of three components arranged in successive
order: object localization, feature extraction and classification. The figure depicts the
interconnections as well as the inputs and outputs of the miscellaneous components.
Starting with the robot’s camera image the classification process is shown. The atten-
tional system currently works on visual sensory input. In the first step, the camera
image is searched for regions containing interesting low level features (e.g., blobs of
desired color). In the second step, additional features are extracted from the region of
interest to be used by the object recognition system

3.1 Attentional System

The attentional system [14] receives input from some higher goal and motor
areas which specify the current interest of the robot (e.g., searching for red-
colored objects; areas M2 or M2attr in Fig. 3). Subsequently, the camera image
is processed by standard computer vision algorithms in order to find regions of
interest (see Fig. 5). If an interesting region is found, this part of the image is
analyzed in more detail. Features (e.g., orientation histograms) are extracted and
transmitted to the object recognition system which is explained in detail in the
next section. The object recognition system classifies the object in the region of
interest and transmits the information to the corresponding visual cortical area
(areas V2 and V2attr). After some time, attention shifts to the next region of
interest, until this process is interrupted by a cortical area controlling attention
(e.g., areas G1 and M1).

When locating relevant objects in complex visual scenes it would be too
time-consuming to simply look at all possible regions. Therefore pre-processing

Fig. 6. Meaningful objects are separated from the background and are marked as
regions of interest. The object colour is used to identify objects of interest. This also
allows to detect partially occluded objects
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is necessary to segment the image into interesting and non interesting regions. To
reduce the time expense of the following process steps the number of regions that
do not contain a relevant object should be minimized. It also should be ensured
that all regions that contain a relevant object will be detected in this step. This
pre-processing which separates meaningful objects from the background is called
visual attention control which defines rectangular regions of interest (ROI). A
region of interest is defined herein as the smallest rectangle that contains one
single object of interest. Figure 6 shows the process of placing the region of
interest.

Especially in the field of robotics real-time requirements have to be met, i.e. a
high frame processing rate is of great importance. Therefore the usage of simple
image processing algorithms is essential here.

The attention control algorithm consists of six consecutive steps. Figure 7
shows the intermediate steps of the attention control algorithm. Camera images
in the RGB format constitute the starting point of the attention control algo-
rithm. At first the original image is smoothed using a 5× 5 Gaussian filter. This
also reduces the variance of colors within the image. The smoothed image is then
converted to HSV color space, where color information can be observed indepen-
dent of the influence of brightness and intensity. In the following only the hue
components are considered. The next step is a color clustering. For this purpose
the color of the object of interest and a tolerance are specified. The HSV image
is searched for colors falling into this predefined range. Thereafter the mean hue
value of the so identified pixels is calculated. This mean value together with
a predefined tolerance is now used to once again search for pixels with colors
in this new range. The result is a binary image where all pixels that fall into
this color range are set to black and all others are set to white. Owing to this
adaptivity object detection is more robust against varying lighting conditions.
The results are further improved using the morphological closing operation [15].
The closing operation has the effect of filling-in holes and closing gaps. In a last

Fig. 7. The intermediate steps of the attention control algorithm
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step a floodfill algorithm [16] is applied to identify coherent regions. The region
of interest is then determined by the smallest rectangle that completely encloses
the region found. Simple heuristics are used to decide whether such a detected
region of interest contains an object or not. For the problem at hand the width-
to-height ratio of the region of interest as well as the ratio of pixels belonging
to the object to pixels belonging to the background in the region of interest are
determined. This method allows for detecting several objects in one scene and
can handle partial occlusion to a certain degree.

3.2 Feature Extraction

Simply using the raw image data for classification would be too intricate. Fur-
thermore dispensable and irrelevant information would be obtained. Therefore
it is necessary to extract characteristic features from the image which are suit-
able for classification. These features are more informative and meaningful for
they contain less redundant information and are of a lower dimensionality than
the original image data. To reduce calculation time, features will be extracted
from the detected regions of interest only. Thus even expensive image process-
ing methods can be used to calculate the features. If the object was localized
precisely enough this yields translation and partial scaling invariance.

The selection of the features depends, inter alia, on the objects to be classified.
For the distinction of different fruits, appropriate features are those representing
color and form of the object present. Among others we use the mean color values
of the HSV representation of the detected region of interest as well as orientation
histograms [17] summing up all orientations (directions of edges represented by
the gradient) within the region of interest.

To determine the mean color values the camera image is converted from RGB
color space to HSV color space [18]. For each color channel the mean value of
the localized object within the region of interest is calculated. Color information
is helpful to distinguish e.g. between green and red apples. Advantages of color
information are its scale and rotation invariance as well as its robustness to
partial occlusion. Furthermore it can be effectively calculated.

To calculate the orientation histograms which represent the form of the object
the gradient in x and y direction of the grey value image is calculated using the
Sobel edge detector [19]. The gradient angles are discretized. Here we divided
the gradient angle range into eight sections. The discrete gradient directions are
weighted with the gradient value and summed to form the orientation histogram.
The orientation histogram provides information about the directions of the edges
and their intensity.

It has been found that the results achieved could be improved if not only one
orientation histogram per region of interest is used to represent the form of the
object but several orientation histograms are calculated from different parts of
the region of interest as information about the location of the orientations is not
completely disregarded. The region of interest is therefore split into m×m parts
of the same size. For each part a separate orientation histogram is calculated.
The concatenated orientation histograms then form the feature vector. If the
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Fig. 8. The image is split into sub-images. For each sub-image an orientation histogram
is calculated by summing up the orientations that occur in this sub-image. For reasons
of simplicity non-overlapping sub-images are depicted

parts overlap by about 20% the result improves further since it becomes less
sensitive to translation and rotation. We chose to divide the image into 3 × 3
parts with approximately 20% overlap. Figure 8 illustrates how an orientation
histogram is generated.

The dimension of the feature vector depends only on the number of sub-
images and the number of sections used to discretise the gradient angle. The
orientation histogram is thus largely independent of the resolution of the image
used to extract the features.

4 Cortical Model

Our cortical model consists of four parts, namely speech recognition, language
processing, action planning and object recognition (see also figure 1).

For speech recognition standard Hidden-Markov-Models on single word level
are used, but for simplicity it is also possible to type the input directly via a
computer terminal.

The resulting word stream serves as input to the language processing system,
which analyzes the grammar of the stream. The model is capable of identifying
regular grammars. If a sentence is processed which is incorrect with respect to the
learned grammar, the systems enters an error state, otherwise, the grammatical
role of the words is identified.

If the sentence is grammatically interpreted, it becomes possible to formu-
late what the robot has to do, i.e. the goal of the robot. This happens in the
action planning part, which receives the corresponding input from the language
processing system. The robot’s goal (e.g. ”bot lift plum”) is then divided into
a sequence of simple subgoals (e.g. ”search plum”, ”lift plum”) necessary to
archive the goal. The action planning part initiates and controls the required
actions to archive each subgoal, e.g. for ”search red plum”, the attentional sys-
tem will be told to look for red objects. The detected areas of interest serve as
input for the object recognition system, the fourth part of our cortical model.
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We use hierarchically organized RBF (radial basis function) networks for object
recognition, which are more accurate compared to a single RBF network, while
still being very fast. The output of the object recognition again serves as input
to the action planning system. If in our example a plum is detected, the action
planning areas will recognize that and switch to the next subgoal, which here
would be to lift the plum.

The language as well as the action planning part are using the theory of cell
assemblies which is implemented using Willshaw’s model of associative memory
[4][5][6][7][8][9]. This results in an efficient, fault tolerant and still biological
realistic system.

4.1 Visual Object Recognition

The visual object recognition system is currently implemented using a hierar-
chical arrangement of radial-basis-function (RBF) networks. The basic idea of
hierarchical neural networks is the division of a complex classification task into
several less complex tasks by making coarse discrimination at higher levels of the
hierarchy and refining the discrimination with increasing depth of the hierarchy.
The original classification problem is decomposed into a number of less exten-
sive classification problems organized in a hierarchical scheme. Figure 9 shows
a hierarchy for recognition of fruits and gestures which has been generated by
unsupervised k-means clustering.

From the activation of the RBF networks (the nodes in Fig. 9) we have de-
signed a binary code in order to express the hierarchy into the domain of cell
assemblies. This code should preserve similarity of the entities as expressed by
the hierarchy. A straightforward approach is to use binary vectors of length
corresponding to the total number of neurons in all RBF networks. Then in a
representation of a camera image those components are activated that corre-
spond to the l strongest activated RBF cells on each level of the hierarchy. This
results in sparse and translation invariant visual representations of objects.

That way, the result of the object recognition is transformed into the binary
code, and using additional information about space and location from the atten-
tional system, the corresponding neurons are activated in areas V1,V2,V2attr,
and V3.

Hierarchical Neural Networks. Neural networks are used for a wide vari-
ety of object classification tasks [20]. An object is represented by a number of
features, which form a d dimensional feature vector x within the feature space
X ⊆ IRd. A classifier therefore realizes a mapping from feature space X to a finite
set of classes C = {1, 2, ..., l}. A neural network is trained to perform a classi-
fication task using supervised learning algorithms. A set of training examples
S := {(xμ, tμ), μ = 1, ...,M} is presented to the network. The training set con-
sists of M feature vectors xμ ∈ IRd each labeled with a class membership tμ ∈ C.
During the training phase the network parameters are adapted to approximate
this mapping as accurately as possible. In the classification phase unlabeled data
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xμ ∈ IRd are presented to the trained network. The network output c ∈ C is an
estimation of the class corresponding to the input vector x.

The basic idea of hierarchical approaches to object recognition is the division
of a complex classification task into several smaller and less complex ones [21].
The approach presented here hierarchically decomposes the original classification
problem into a number of less extensive classification problems. Starting with
coarse discriminations between few (but large) subsets of classes at higher levels
of the hierarchy the discriminations are stepwise refined. At the lowest levels of
the hierarchy there are discriminations between single classes. Thus the hierarchy
emerges from successive partitioning of sets of classes into disjoint subsets, i.e
the original set of classes is recurrently decomposed into several disjoint subsets
until subsets consisting of single elements result. This leads to a decrease in the
number of class labels processed in a decision node with increasing depth of
this node.

The hierarchy consists of several simple neural networks that are stratified as
a tree or more generally as a rooted directed acyclic graph, i.e. each node within
the hierarchy represents a neural network that works as a classifier. The divi-
sion of the complex classification problem into several less complex classification
problems entails that instead of one extensive classifier several simple classifiers
are used which are more easily manageable. This has not only a positive effect
on the training effort, but also simplifies modifications of the design since the
individual classifiers can be amended much more easily to the decomposed sim-
ple classification problems than one classifier could be adapted to a complex
classification task. The use of different feature types additionally facilitates the
classification tasks at different nodes, since for each classification task the feature
type that allows for the best discrimination can be chosen. Hence for each data
point within the training set a feature vector for each prototype is available.
Moreover the hierarchical decomposition of the classification result provides ad-
ditional intermediate information. In order to solve a task it might be sufficient
to know whether the object to be recognized belongs to a set of classes and the
knowledge of the specific category of the object might not add any value.

The hierarchy also facilitates a link between symbolic information and sub-
symbolic information: The classification itself is performed using feature vec-
tors which represent sub-symbolic information, whereas symbolic knowledge can
be provided concomitantly via the information about the affiliation to certain
subsets of classes. The usage of neural networks allows the representation of
uncertainty of the membership to these classes since the original output of the
neurons is not discrete but continuous. Moreover a distributed representation
can easily be generated from the neural hierarchy. Since the hierarchy is gener-
ated using features which are based on the appearance of the objects such as
orientation or color information it primarily reflects visual similarity. Thus it
allows the generation of a sparse similarity preserving distributed representation
of the objects. A straight-forward approach is the usage of binary vectors of
length corresponding to the total number of neurons in the output layer of all
networks in the hierarchy. The representation is created identifying the strongest
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activated output neurons for each node. The corresponding elements of the code
vector are then set to 1, the remaining elements are set to 0. These properties
are extremely useful in the field of neuro-symbolic integration [22] [23] [24]. For
separate object localization and recognition a distributed representation may
not be relevant, but in the overall system in the MirrorBot project this is an
important aspect [25].

Hierarchy Generation. The hierarchy is generated by unsupervised k-means
clustering [26]. In order to decompose the set of classes assigned to one node into
disjoint subsets a k-means clustering is performed with all data points belonging
to these classes. Depending on the distribution of the classes across the k-means
clusters disjoint subsets are formed. One successor node corresponds to each
subset. For each successor node again a k-means clustering is performed to fur-
ther decompose the corresponding subset. The k-means clustering is performed
for each feature type. Since the k-means algorithm depends on the initialization
of the clusters, k-means clustering is performed several times per feature type.
The number of clusters k must be at least the number of successor nodes or the
number of subsets respectively but can also exceed this number. If the number
of clusters is higher than the number of successor nodes, several clusters are
grouped together so that the number of groups equals the number of successor
nodes. All possible groupings are evaluated. In the following all equations only
refer to clusterings for reasons of simplicity, i.e. the number of clusters k equals
the number of successor nodes. A valuation function is used to rate the cluster-
ings or groupings respectively. The valuation function prefers clusterings that
group data according to their class labels. Clusterings where data are uniformly
distributed across clusters notwithstanding their class labels receive low ratings.
Furthermore clusterings are preferred which evenly divide the classes. Thus the
valuation function rewards unambiguity regarding the class affiliation of the data
assigned to a prototype as well as uniform distribution regarding the number of
data points assigned to each prototype.

The valuation function V (p) consists of two terms regulated by a scaling
parameter λ > 0. The first term E(p) calculates the entropy of the distribu-
tion of each class across the different clusters. This accounts for unambiguous
distribution of the data considering the corresponding classes. The term E(p)
becomes minimal if it is ensured for all classes that all data belonging to one
class is assigned to one cluster. It becomes maximal if all data belonging to one
class is uniformly distributed across all clusters. The second term D(p) computes
the deviation from the uniform distribution. This term becomes minimal if each
cluster is assigned the same number of data points. This allows for the even
division of the classes into subsets. During the hierarchy generation phase we
are looking for clusterings that minimize the valuation function V (p). The influ-
ence of the respective term is regulated by the scaling parameter λ. Both terms
are normalized so that they return values of the interval [0, 1]. The valuation
function V (p) is given by

V (p) =
1

l log2(k)
E(p) + λ

1
l(k − 1)

D(p) → min
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where E(p) =
∑l

i=1(−
∑k

j=1(p
j
i log2(p

j
i ))), D(p) =

∑k
j=1 |

∑l
i=1 pj

i − l
k | and

pj
i = |Xi∩Zj |

|Xi| denotes the rate of patterns from class i, that belong to cluster j.
Here Xi = {xμ|μ = 1, ...,M ; tμ = i} ⊆ X is the set of data points that belong to
class i, Rj = {x ∈ IRd|j = argmini=1,...,k‖x − zi‖} denotes the Voronoi cell [27]
defined by cluster j and Zj = Rj

⋂
X is the set of data points that were assigned

to cluster j. zi is the center of cluster i. The best clustering, i.e. the one that
minimizes the valuation function V (p), is chosen and is used for determining the
division of the set of classes into subsets. Moreover this also determines which
feature type will be used to train the corresponding classifier. So each classifier
within the hierarchy can potentially use a different feature type and thereby
operates in a different feature space. To identify which classes will be added to
which subset the distribution of the data across the clusters is considered. The
division in subsets Cj is carried out by maximum detection. The set of classes
belonging to subset Cj is defined as Cj = {i ∈ C|j = argmax{qi,1, ..., qi,k}}
where qi,j = |Xi∩Zj |

|Zj | denotes the rate of class i in cluster j. For each class it
is determined to which cluster the majority of data points belonging to this
class were associated. The class label will then be added to the corresponding
subset.

To generate the hierarchy at first the set of all classes is assigned to the root
node. Starting with a clustering on the complete data set the set off classes is
divided into subsets. Each subset is assigned to a successor node of the root node.
Now the decomposition of the subsets is continued until no further decomposition
is possible or until the decomposition does not lead to a new division. An example
of a classification hierarchy is shown in figure 9.

Fig. 9. Classifier hierarchy generated for the classification of different kind of fruits
using two feature types: orientation histograms and color information. Each node within
the hierarchy represents a neural network or a classifier respectively. The end nodes
represent classes. To each node a feature type and a set of classes is assigned. The
corresponding neural network uses the assigned feature type to discriminate between
the assigned classes
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Training and Classification. Within the hierarchy different types of classi-
fiers can be used. Examples of classifiers would be radial basis function (RBF)
networks, linear vector quantization classifiers or support vector machines. We
chose RBF networks [28] as classifiers. They were trained with a three phase
learning algorithm [29].

The hierarchy is trained by separately training each neural network within
the hierarchy. The classifiers are trained using supervised learning algorithms.
Each classifier is trained only with data points belonging to the classes assigned
to the corresponding node hence the complete training set is only used to train
the classifier that represents the hierarchy’s root node. The classifiers are trained
with the respective feature type identified during the hierarchy generation phase.
To train the classifiers the data will be relabeled so that all data points of the
classes that belong to one subset have the same label. The classifiers within
the hierarchy can be trained independently, i.e. all classifiers can be trained in
parallel.

The classification result is retrieved similar to the retrieval in a decision tree
[27]. Starting with the root node the respective feature vector of the object to
be classified is presented to the trained classifier. By means of the classification
result the next classifier to categorize the data point is determined. Thus a path
through the hierarchy from the root node to an end node is obtained which not
only represents the class of the object but also the subsets of classes to which
the object belongs. Hence the data point is not presented to all classifier within
the hierarchy. If only intermediate results are of interest it is not necessary to
evaluate the complete path.

4.2 Language Processing System

Our language system consists of a standard Hidden-Markov-based speech recog-
nition system for isolated words and a cortical language processing system which
can analyze streams of words detected with respect to simple (regular) gram-
mars. For simplicity, the speech recognition system can also be replaced by direct
text input via a computer terminal and a wireless connection to the robot.

Regular Grammars, Finite Automata and Neural Assemblies. Regular
grammars can be expressed by generative rules of the type A �→ a or A �→ bC,
where capital letters are variables and lower case letters are terminal symbols,
i.e. elements in of an alphabet Σ. There is usually a special starting variable S
which can be expanded by applying the rules. Let Σ∗ be the set of all possible
strings of symbols from the alphabet Σ with arbitrary length. A sentence s ∈ Σ∗

is then called valid with respect to the grammar, if it can be derived from S by
applying the grammatical rules and resolving all variables by terminal symbols.
It is easy to show that regular grammars are equivalent to deterministic finite
automata.

A deterministic finite automate (DFA) can be specified by the set M =
(Z,Σ, δ, z0, E), where Z = {z0, z1, . . . , zn} is a finite set of states, Σ is the
alphabet, z0 ∈ Z is the starting state and E ⊆ Z contains the terminal states.
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Fig. 10. Comparison of deterministic finite automate (DFA, left side) with a neural
network (middle) and cell assemblies (right).
Each δ-transition δ(zi, ak) = zj corresponds to synaptic connections from neuron Ci

to Cj and from input neuron Dk to Cj in the neural network. For cell assemblies, the
same basic architecture as for the neural net (lower part in the middle) is used, but
instead of using single neurons for the states, assemblies of several cells are used

Finally, the function δ : (Z,Σ) → Z defines the state transitions. A sentence
s = s1s2 . . . sn ∈ Σ∗ is valid with respect to the DFA, if iterated application of
δ on z0 and the letters of s transfers the automates starting state z0 into one of
the terminal states in E, i.e. if δ(. . . δ(δ(z0, s1), s2), . . . , sn) ∈ E.

We now show that DFAs can easily be modelled by recurrent neural networks.
For an overview, see also figure 10. This recurrent binary network is specified by
N = (C,D,W, V, C1), where C = (C1, C2, . . . , Cn) contains the local cells of the
network, D = (D1, D1, . . . Dm) is the set of external input cells, C1 is the starting
neuron and W = (wij)n×n as well as V = (vij)m×n are binary matrices. Here,
wij describes the strength of the local synaptic connection between neuron Ci

and neuron Cj , where vij is the synaptic strength between neuron Di and neuron
Cj . The network evolves in discrete time steps, where a neuron Ci is activated
if the sum over its inputs exceeds threshold Θi, otherwise, it is inactive, i.e.

Ci(t + 1) =
{

0 , if
∑

j wjiCj(t) +
∑

j vjidj(t) ≥ Θi

1 , otherwise
.

To simulate a DFA, we need to identify the alphabet Σ with the external input
neurons D and the states Z with the local cells C. The synapses wij and vkj
are active if and only if δ(zi, ak) = zj for the transition function δ of the DFA.
Finally, set all thresholds Θi = 1, 5 and activate only the starting neuron D0

at time 0. A sentence s = s1s2 . . . sn is then presented by activating neuron
Dst

at the discrete time t ∈ {1, . . . , n} and to deactivate all other neurons Dj

with j �= st. Then, the network simulates the DFA, i.e. after presenting the last
symbol of the sentence, one of the neurons corresponding to the terminal states
of the DFA will be active if and only if the sentence was valid with respect to
the simulated DFA.

Biologically, it would be more realistic to have cell assemblies (i.e. strongly
interconnected group of nearby neurons) representing the different states. This
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Fig. 11. The language system consisting of 10 cortical areas (large boxes) and 5
thalamic activation fields (small black boxes). Black arrows correspond to inter-areal
connections, gray arrows within areas correspond to short-term memory

enables fault tolerance, since incomplete input can be completed to the whole
assembly, furthermore, it becomes possible to express similarities between the
represented objects via overlaps of the corresponding assemblies.

Cell Assembly Based Model. Figure 11 shows 15 areas of our model for
cortical language processing. Each of the areas is modeled as a spiking associative
memory of 400 neurons. Similar as described for visual object recognition, we
a priori defined for each area a set of binary patterns constituting the neural
assemblies stored auto-associatively in the local synaptic connections. The model
can roughly be divided into three parts. (1) Primary cortical auditory areas A1,
A2, and A3: First, auditory input is represented in area A1 by primary linguistic
features (such as phonemes), and subsequently classified with respect to function
(area A2) and content (area A3). (2) Grammatical areas A4, A5-S, A5-O1-a, A5-
O1, A5-O2-a, and A5-O2: Area A4 contains information about previously learned
sentence structures, for example that a sentence starts with the subject followed
by a predicate (see Fig. 12). In addition to the auto-associative connections,
area A4 has also a delayed feedback-connection where the state transitions are
stored hetero-associatively. The other grammar areas contain representations
of the different sentence constituents such as subject (A5-S), predicate (A5-P),
or object (A5-O1, O1-a, O2, O2-a). (3) Activation fields af-A4, af-A5-S, af-
A5-O1, and af-A5-O2: The activation fields are relatively primitive areas that
are connected to the corresponding grammar areas. They serve to activate or
deactivate the grammar areas in a rather unspecific way. Although establishing
a concrete relation to real cortical language areas of the brain is beyond the scope
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Fig. 12. Graph of the sequence assemblies in area A4. Each node corresponds to
an assembly, each arrow to a hetero-associative link, each path to a sentence type.
For example, a sentence “Bot show red plum” would be represented by the sequence
(S,Pp,OA1,O1,ok SPO)

of this work [30][31], we suggest that areas A1,A2,A3 can roughly be interpreted
as parts of Wernicke’s area, and area A4 as a part of Broca’s area. The complex
of the grammatical role areas A5 might be interpreted as parts of Broca’s or
Wernicke’s area, and the activation fields as thalamic nuclei.

4.3 Planning, Action and Motor System

Our system for cortical planning, action, and motor processing can be divided
into three parts (see Fig. 13). (1) The action/planning/goal areas represent the
robot’s goal after processing a spoken command. Linked by hetero-associative
connections to area A5-P, area G1 contains sequence assemblies (similar to area
A4) that represent a list of actions that are necessary to complete a task. For
example, responding to a spoken command “bot show plum” is represented by
a sequence (seek,show), since first the robot has to seek the plum, and then
the robot has to point to the plum. Area G2 represents the current subgoal,
and areas G3, G3attr, and G4 represent the object involved in the action, its
attributes (e.g., color), and its location, respectively. (2) The “motor” areas
represent the motor command necessary to perform the current goal (area G2),
and also control the low level attentional system. Area M1 represents the current
motor action, and areas M2, M2attr, and M3 represent again the object involved
in that action, its attributes, and its location. (3) Similar to the activation fields
of the language areas, there are also activation fields for the goal and motor areas,
and there are additional “evaluation fields” that can compare the representations
of two different areas. For example, if the current subgoal is ”search plum”, it
is needed to compare between the visual input and the goals object ”plum” in
order to tell whether the subgoal is achieved or not.



Combining Visual Attention, Object Recognition and Associative Information 135

Fig. 13. The cortical goal and motor areas. Conventions are the same as for Fig. 11

5 Integrative Scenario

To illustrate how the different subsystems of our architecture work together,
we describe a scenario where an instructor gives the command “Bot show red
plum!”, and the robot has to respond by pointing onto a red plum located in
the vicinity.

To complete this task, the robot first has to understand the command. Fig. 14
illustrates the language processing involved in that task. One word after the
other enters areas A1 and A3, and is then transferred to one of the A5-fields.
The target field is determined by the sequence area A4, which represents the
next sentence part to be parsed, and which controls the activation fields which
in turn control areas A5-S/P/O1/O2. Fig. 14 shows the network state when
“bot”, “show”, and “red” have already been processed and the corresponding
representations in areas A5-S, A5-P, and A5-O1attr have been activated. Acti-
vation in area A4 has followed the corresponding sequence path (see Fig. 12) and
the activation of assembly O1 indicates that the next processed word is expected
to be the object of the sentence. Actually, the currently processed word is the
object “plum” which is about to activate the corresponding representation in
area A5-O1.

Immediately after activation of the A5-representations the corresponding in-
formation is routed further to the goal areas where the first part of the se-
quence assembly (seekshow,pointshow) gets activated in area G1 (see Fig. 15).
Similarly, the information about the object is routed to areas G2, G3, and
G3attr. Since the location of the plum is unknown, there is no activation in
area G4. In area G2 the “seek” assembly is activated which in turn activates
corresponding representations in the motor areas M1, M2, M3. This also ac-
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Fig. 14. The language areas when processing the sentence “Bot show red plum!”. The
first three words have already been processed successfully

tivates the attentional system which initiates the robot to seek for the plum
as described in section 3.1. Fig. 15 shows the network state when the visual
object recognition system has detected the red plum and the corresponding
representations have been activated in areas V2, V2attr, and V3. The control
fields detect a match between the representations in areas V2 and G3, which
initiates area G1 to switch to the next part of the action sequence. Figure 16
shows the network state when already the “point” assembly in areas G1 and
G2 has activated the corresponding representations in the motor areas, and
the robot tries to adjust its “finger position” represented in area S1 (also vi-
sualized as the crosshairs in area V1). As soon as the control areas detect a
match between the representations of areas S1 and G4, the robot has finished
his task.
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Fig. 15. System state of the action/motor model while seeking the plum

Fig. 16. System state of the action/motor model while pointing to the plum

6 Results

6.1 Evaluation of the Sensory Preprocessing

We evaluated the object localization approach using a test data set which con-
sisted of 1044 images of seven different fruit objects. The objects were recorded
under varying lighting conditions. The images contained a single object in front
of a unicolored background. On this data set all 1044 objects were correctly
localized by the attention control algorithm. No false-negative decisions were
made, i.e. if there was an object in the scene it has been localized, and only 23
decisions were false-positive, i.e. regions of interest were marked although they
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Fig. 17. Examples of the images used. They contain different fruits in front of various
backgrounds

did not contain an object. In order to handle these cases appropriately the clas-
sifier should be able to recognize unknown objects. This could be achieved by
adding an additional class for unknown objects and training the classifier with
examples of unknown objects or by evaluating the classifier output to identify
weak outputs which are likely to be caused by unknown objects. The algorithm
was also tested on images that contained more than one object. It was found
that the number of objects within the image did not have an impact on the
performance of the algorithm as long as the objects are not occluded. Likewise
different background colors and textures did not impact the performance pro-
vided that the background color is different from the object’s color. Figure 17
shows examples of the images used to evaluate the approach. They vary in type
and number of fruits present as well as in background color and structure.

The hierarchical classifier was evaluated using a subset of the data. This
subset consists of 840 images, i.e. 120 images per object showing different views
of the object. Figure 9 shows the hierarchy generated by the above described
algorithm for the classification of seven fruit objects. Using 10-times 5-fold cross-
validation experiments have been conducted on a set of recorded camera images
in order to evaluate our approach.

We compared the performance of non-hierarchical RBF networks utilizing
orientation histograms or color information respectively as feature type to the
hierarchical RBF classifier architecture presented above. The classification rates
are displayed in the box and whiskers plot in figure 19. Compared to simple
neural networks that only used one feature type the performance of a hierar-
chical neural network is significantly better. The average accuracy rate of the
hierarchical classifier was 94.05 ± 1.57% on the test data set and 97.92 ± 0.68%
on the train data set. The confusion matrix in figure 18 shows that principally
green apples were confused with red apples and yellow plums. Further confusions
could be observed between red plums and red apples.
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Fig. 18. The confusion matrix shows row by row to which percentage objects of one
class were classified as which class. If no confusions occurred the corresponding field
on the matrix diagonal is marked in light grey. Confusions are marked in dark grey

Fig. 19. The box and whisker plot illustrating the classification accuracy of non-
hierarchical and hierarchical classifiers. The non-hierarchical classifiers were used to
evaluate the different feature types used

The performance of the approach was tested on a Linux PC (Intel Pentium
Mobile 1,6 GHz, 256 MB RAM). The average time for one recognition cycle in-
cluding object localization, feature extraction and object classification was 41 ms.



140 R. Fay et al.

Furthermore the object recognition system was tested on the robot. Thereto
we defined a simple test scenario in which the robot has to recognize fruits placed
on a table in front of it. This proved that the robot is able to localize and identify
fruits not only on recorded test data sets but also in a real-life situation. A video
of this can be found in [32].

6.2 Evaluation of the Cortical Information Processing

The cortical model is able to use context for disambiguation. For example, an
ambiguous phonetic input such as ”bwall”, which is between ”ball” and ”wall”,
is interpreted as ”ball” in the context of the verb ”lift”, since ”lift” requires a
small object, even if without this context information the input would have been
resolved to ”wall”. Thus the sentence ”bot lift bwall” is correctly interpreted. As
the robot first hears the word ”lift” and then immediately uses this information
to resolve the ambiguous input ”bwall”, we call that ”forward disambiguation”.
This is shown in figure 20.

Fig. 20. A phonetic ambiguity between ”ball” and ”wall” can be resolved by using
context information. The context ”bot lift” implies that the following object has to be
of small size. Thus the correct word ”ball” is selected

Our model is also capable of the more difficult task of ”backward disam-
biguation”, where the ambiguity cannot immediately be resolved because the
required information is still missing. Consider for example the artificial ambi-
guity ”bot show/lift wall”, where we assume that the robot could not decide
between ”show” and ”lift”. This ambiguity cannot be resolved until the word
”wall” is recognized and assigned to its correct grammatical position, i.e. the
verb of the sentence has to stay in an ambiguous state until enough information
is gained to resolve the ambiguity. This is achieved by activating superpositions
of the different assemblies representing ”show” and ”lift” in area A5P, which
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stores the verb of the current sentence. More subtle information can be repre-
sented in the spike times, which allows for example to remember which of the
alternatives was the more probable one.

7 Conclusion

We have presented a cell assembly based model for visual object recognition
and cortical language processing that can be used for associating words with
objects, properties like colors, and actions. This system is used in a robotics
context to enable a robot to respond to spoken commands like ”bot put plum to
green apple”. The model shows how sensory data from different modalities (e.g.,
vision and speech) can be integrated to allow performance of adequate actions.
This also illustrates how symbol grounding could be implemented in the brain
involving association of symbolic representations to invariant object representa-
tions. The implementation in terms of Hebbian assemblies and auto-associative
memories generates a distributed representation of the complex situational con-
text of actions, which is essential for human-like performance in dealing with
ambiguities.

Although we have currently stored only a limited number of objects and
sentence types, our approach is scalable to more complex situations. It is well
known for our model of associative memory that the number of storable items
scales with (n/ log n)2 for n neurons [4][5]. This requires the representations
to be sparse and distributed, which is a design principle of our model. As any
finite system, our language model can implement only regular languages, whereas
human languages seem to involve more complex grammars from a linguistic point
of view. On the other hand, also humans cannot “recognize” formally correct
sentences beyond a certain level of complexity suggesting that in practical speech
we use language rather “regularly”.
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Abstract. This paper presents a computational self-organizing model of
multi-modal information, inspired from cortical maps. It shows how the
organization in a map can be influenced by the same process occurring
in other maps. We illustrate this approach on a phonetic - motor asso-
ciation, that shows that the organization of words can integrate motor
constraints, as observed in humans.

1 Introduction

In the evolutionary process, the appearance of the cerebral cortex has had dra-
matic consequences on the abilities of mammals, which reach their maximum in
humans. Whereas it can be said that the limbic system has added an emotional
dimension on purely reactive schemes [1], the cerebral cortex has offered a new
substratum devoted to multimodal information representation [2]. When one
considers the associated cost of this neuronal structure in terms of energy needs
and size in the limited skull, it can be thought that the corresponding functions
might be complex but highly interesting from an adaptive point of view.

Basically, the cerebral cortex is often described as a set of topological maps
representing sensory or motor information, but also merging various represen-
tations in so-called associative maps. Concerning afferent connections toward
cortical maps, the topological principle explains that information coming from
sensors is represented along important dimensions, like retinotopy for the visual
case. Moreover, at a lower level of description, some kind of filtering process al-
lows to extract and represent onto the mapping other functional information [3],
like orientation selectivity or color contrast in the visual case.

Concerning cortico-cortical connections, the important role of these internal
links must be underlined. For example, the cerebral cortex and the cerebellum
are reported as having approximately the same number of synapses (1012) [4] and
the big difference of volume between these structures can be explained by the fact
that internal connections are much more numerous in the cerebral cortex (more
than 75%). These internal connections inside the cerebral cortex are observed

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 144–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Towards Word Semantics from Multi-modal Acoustico-Motor Integration 145

as belonging to a map, to achieve the topological representation, but also as
connecting maps, which is fundamental to create associative maps [5, 2].

From a functional point of view, the role of the cerebral cortex has often
been described as unsupervised learning [6]. In the statistical domain, the goal
of unsupervised models like the K-means, hierarchical classification, Principal
Component Analysis (PCA), Independent Component Analysis (ICA) is to cat-
egorize information from the regularities observed in its distribution (as opposed
to an external signal, seen as a teacher or a supervisor) or to select in a high
dimensional space the most significant axes on which to project information. It
must be underlined that such information processing is very consistent with the
cortical organizational principles of topological representation and filtering.

From a modeling point of view, neuronal models are among the most well-
known unsupervised techniques. The central one is certainly Kohonen’s Self-
Organizing Map [7], which has been proposed from its origin as a model of
a cortical map (see also [8]) and has been applied in various sensory domains
(see for example [9] for the visual case, [10] for the auditory case, etc.). Later,
from this simple but powerful scheme, other more complicated models have been
elaborated to fit more closely to the biological reality (cf. for example [11] for the
visual case), but they all rely on the same fundamental principle of competitive
learning, as observed in the cerebral cortex.

Interestingly, it must be noticed that most of these neuronal models lay em-
phasis on the representation of one sensory or motor information and not on the
joint organization of several interacting flows of information (a notable excep-
tion being [12]). Nevertheless, evidence from neurosciences indicates that this
function is also present in cortical processing. To tell it differently, the cortex
is not only several self-organizing maps, each one representing its own modality
(or set of modalities in the associative case) and communicating one with the
other, but rather a set of maps acting all together to represent information of
the external world from different but cooperating points of view in a global way.

Of course, such a holistic view cannot be obtained if, as it is often the case,
one unique map is considered in the modeling process. The fact is that several
biological data indicates that the cortical processing cannot be only summarized
by independent self-organizations.

From a connectivity point of view, we have indicated above the important
role which is given to recurrent cortico-cortical connections. This might be con-
sistent with asking for a global consistency in representations on top of simple
local competitions. Several electrophysiological studies have shown that a cor-
tical region can change the kind of information it represents in case of a lesion
(e.g. changing representation of the finger in a lesioned monkey [13]) or in case
of sensory substitution (e.g. tactile stimulation for blind people [14]).

From a representational point of view, several brain imaging studies [15] have
shown that word encoding within the brain is not only organized around phonetic
codes but is also organized around action.

How this is done within the brain has not yet been fully explained but we
would like to present how these action based representations naturally emerge in
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our model by virtue of solving constraints coming from motor maps. This model,
called Bijama, is a general-purpose cortically-inspired computational framework
that has also been used for rewarded arm control [16]. It is described in general
terms in section 2, with particular attention to the effect of learning rules in
section 3. Then, the actual use of the model for acoustico-motor integration in
presented in section 4.

2 Bijama Model Features

The features of the model are presented briefly in the following sections. A
more detailed presentation can be found in [17, 16], where the current model is
applied to a simplified version of a target reaching problem with an artificial
arm. This model is referred as the Bijama model in related papers, which stands
for Biologically-Inspired Joint Associative MAps.

2.1 Maps, Units and Competition

The main computational block of the model is a set of computational units called
a map. A map is a sheet made of a tiling of identical units. This sheet has been
implemented as a disk, for architectural reasons described further. When input
information is given to the map, each unit shows a level of activity, depending on
the similarity of the information it receives with the information it specifically
detects, as will be detailed in section 2.2. That activity, noted At, follows a
Gaussian tuning curve in the model: At is a matching activity, that is maximal
if input information exactly corresponds to the prototype of the unit, and gets
weaker as input gets different from this prototype.

When an input is given to the map, the distribution of matching activities
among units is a scattered pattern, because tuning curves are not sharp, which
allows many units to have non null activities, even if prototypes don’t perfectly
match the input. From this activity distribution over the map, a small compact
set of units that contains the most active units has to be selected. Unlike in
SOMs where this decision is made by a centralized “winner-take-all” process,
decision is made here by a numerical distributed process, emerging from a local
competitive mechanism, as in [8].

In order to decide which units are locally the best matching ones inside a map,
a local competition mechanism is implemented. It is inspired from theoretical
results of the continuum neural field theory (CNFT) [18, 19], but it is adapted
to become independent of the number of connections, thus avoiding disastrous
border effects: The CNFT algorithm tends to choose more often units that have
more connections. Thus, the local connection pattern within the maps must
be the same for all units, which is the case for torus-like lateral connection
pattern, with units in one border of the map connected to the opposite border,
for example. Here, the field of units in the map computes a distribution of global
activities A�, resulting from the competition among current matching activity
At. This competition process has been made insensitive to the actual position
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Fig. 1. Result of competition in a map among the At (dark gray) and resulting A�

(light gray). A bubble of A� appears where At is the strongest in its neighborhood

of units within the map, in spite of heterogeneous local connection patterns at
the level of border units in the Bijama model, as detailed further.

The result of this competition is the rising of a bubble of A� activity in the
map at places where At activities are the most significant (cf. figure 1). The pur-
pose of the resulting A� activity is twofold. First, this activity defines the main
activity of the unit: This activity is the one that is viewed by other connected
units in all activation rules detailed further. Second, all learning processes are
modulated by this activity. That means that only units in A� activity bubbles
learn in the map.

The global behavior of the map, involving adaptive matching processes, and
learning rules dependent on a competition, reminds the Kohonen SOM. However,
the local competition algorithm used here allows the units to be feed with differ-
ent inputs. The source of information received by a unit differs from one unit to
its neighbors, because of the stripe connectivity described below in section 2.3.
Another difference with SOM not previously detailed is that, in our model, com-
petition and learning are not separated stages. Learning is dependent on A�,
and also occurs during the A� bubble setting.

2.2 Matching Activity Computation

It has been mentioned previously that competition is computed on the basis of
a matching activity At. As detailed below, this activity is actually the merg-
ing of several matching results, and it may be considered as a global matching
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activity. Inside the units in the model, each matching result is performed by a
computational module called a layer. Therefore, a layer in our model is a sub-
part of a unit, computing a specific matching, and not a layer of neurons as
classically reported in various models. It is inspired from the biological model
of the cortical column by [20]. A layer gathers inputs from the same origin (a
map), and computes a matching value from the configuration of these inputs.
As a consequence, the behavior of a unit can be described as the gathering of
several layers. These are detailed in the following.

First of all, some maps receive input from the external world. Each unit in
the map reacts according to the fitting of this input to a preferred input. In the
cortex, the thalamus plays a role in sending inputs to the cortex. In our model,
the layer which tunes a preferred perception is called a thalamic layer. This layer
provides a thalamic matching activity.

One other kind of layer is the cortical layer. It receives information from an-
other map. The connectivity of this layer will be further discussed in section 2.3.
Let us just say for now that its purpose is to compute a cortical matching ac-
tivity that corresponds to the detection of some A� activity distribution in the
remote units it is connected to.

If the map is connected to a number n of other maps, its units have n cortical
layers, thus computing n cortical matching results (one per cortical layer). These
matchings are merged to form a global cortical matching. If the map has a
thalamic layer, the thalamic matching result is then merged to the global cortical
matching, to form the global matching At the competition is performed from.

To sum up, our model stresses the two kinds of cortico-cortical connections
mentioned in section 1: Local connections and inter-map connections. The maps
compute activity bubbles, that are a decision enhancing the most relevant units
from local connections belonging to the map. This decision depends on external
input, computed by the thalamic layer, but also on the state of other maps
through cortical layers, that implement long range cortico-cortical connections.
This computation is a multi-criteria decision, that has complex dynamics, since
it performs a competition from input, but also from the competition that is
performed in the same way in other maps. One consequence of this dynamics,
central to the model, is that the self-organization in a map is modulated by the
organization in the other maps, as illustrated in section 4.

2.3 Inter-map Stripe Connectivity and Disk-Shaped Maps

A cortical layer, that receives information from another map, doesn’t receive
inputs from all the units of the remote map, but only from one stripe of units
(cf. fig. 3). For instance, a map may be connected row-to-row to another map:
Each unit in any row of the first map is connected to every remote units in the
corresponding row of the other map. These connections are always reciprocal in
the model.

This limited connectivity is biologically grounded, as cortical zones are con-
nected to other zones by stripes [2, 3]. Moreover, it has a computational purpose:
If inter-map connectivity were total (if each unit in a map were connected to
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Instable A* bubble state Stable A* bubble state

Associative
map Associative

map

Fig. 2. Conditions for stable A� activity states. On the left, instable state where bub-
bles of A� don’t stand at intersecting stripes. On the right, stable state: Any other
bubble position in the same stripes on the three non-associative maps would also be
stable

every unit in a connected remote map), the number of connections would rise
too quickly as the size and the number of the maps increase and would lead to a
combinatorial explosion. Since this model has been designed to handle multiple
sensori-motor connections, the risk is real and map-to-map connectivity has to
be limited.

A stripe has an orientation that is specific to a map-to-map connection: A
map that is connected to many other ones has a different direction of connection
for each kind of connection. In order to keep the model homogeneous, the shape
of the map must not favor any direction. This is the reason why the maps are
disk-shaped in our model.

Two analogous cortical layers of two neighboring units are connected to par-
allel, adjacent and overlapping stripes in the remote map. Neighboring units
receive close but not identical inputs. That is why a winner-takes-all algorithm
over the whole map isn’t suitable, as already explained.

Through the inter-map connectivity, our model produces resonance between
connected maps: Activity patches in connected maps can only stabilize within
connected modular stripes. The role of reciprocally connected stripes is crucial
for this resonance. Activity At is the basis for inner-map lateral competition
(computation of A�). As this At depends on some cortical activity(ies), computed
from other cortical inputs that are fed with remote A�, bubbles of A� activities
raise in the maps at some particular places: The bubble of activity that appears
in an associative map is at the intersection of the stripes where activity bubbles
coming from the connected maps stand (see figure 2).

In our model, this matching of activity can be compared with a phenomenon
of resonance, as described in the ART paradigm by Grossberg [21], that produces
stable and coherent states across the different maps. It ensures consistency of
the activity bubbles across two connected cortical maps. Since units learning
rate is modulated by their A�, units whose A� are activated simultaneously
in the different maps learn together. We call this coherent learning. Learning
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strengthens the connection between these coherent units, so that they will tend
to activate together again in the future.

2.4 Activation and Learning Rules

As mentioned before, cortical and thalamic layers of the units in the model
have to perform a tuning from the input they receive, so that all matchings are
merged to constitute the global matching activity At. This merging concerns
all cortical and thalamic layers, and is computed from a geometric mean. This
must be seen as a tricky way to compute some kind of numerical AND opera-
tor. Knowing these merging principles, let the computation of each elementary
matching, and their associated learning rule, be detailed for both thalamic and
cortical layers.

The thalamic layer in the model behaves similarly to neurons in Kohonen
maps. This is a custom defined point in the model, depending on the actual entry
format received by the map. For example, thalamic tuned activation can be a
decreasing function of a well suited distance between the input and a prototype.
Then learning consists of making the thalamic prototype be closer to the current
input. This learning process has to be modulated by A� activity for thalamic
layer to be coherent with the remaining of the model. This is also what is done
in Kohonen maps, where learning rate depends on a decreasing function of the
proximity of a neuron with the winning one. This decreasing function in Kohonen
algorithm is analogous to the A� bubble of activity in the model.

The cortical layers all use the same matching and learning rules. Each cortical
activity is computed from a cortical prototype pattern and the cortical input
pattern, which is actually the A� activity distribution in the connected stripe
of remote units. The layer matching activity has to be high only when both the
A� of a remote unit and the corresponding value in the prototype are high: The
cortical layer detects that a remote unit to which it is highly connected is active,
and thus performs a computational “AND”. The learning is, as for the thalamic
layer, modulated by A�.

A unit learns only when it actively participates in the recognition process,
i.e. when it is at a place where a A� bubble stands. It learns both its thalamic
and cortical prototypes, which creates and then maintains coherence between
the different layers. The full unit model is summarized in figure 3.

2.5 Joint Organization

To conclude on the model behavior, the combination of self-organization and
coherent learning produces what we call joint organization: Competition, al-
though locally computed, occurs not only inside any given map, but across all
maps. Moreover, the use of connection stripes limits the connectivity, which
avoids the combinatorial explosion that would occur if the model were to em-
ploy full connectivity between the maps. Thus, coherent learning leads to both
efficient data representation in each map and coordination between all con-
nected maps.
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Cortical matchings

Thalamic matching

Modular stripe

Global matching

Competition result

Stripe direction

Fig. 3. Full functional scheme: The cortical matching activities, obtained from the
modular stripe inter-map connections, are merged together. The thalamic matching is
merged with the result to form a global matching activity. This activity is then used
in the competition process described in section 2.1

3 Multi-association and Cortical Learning Rules

A multi-associative model is intended to associate multiple modalities, regardless
of however they are related. It must then handle the case where the associations
between two modalities are not one-to-one, but rather one-to-many, or even
many-to-many. This multi-association problem will now be presented on a simple
example.

3.1 Associative Units and Multi-association

Let us consider an association between certain objects and the sounds they
produce. A car, for example, could be associated with a motor noise. Certain
objects produce the same noise. As a result, a single noise will be associated
with multiple objects. For instance, a firing gun and some exploding dynamite
produce basically both an explosion sound.

In our model, let us represent the sounds and the objects as two thalamic
modalities on two different cortical maps. Let us now link both of these maps to
another one, that we call an associative map. The sound representations and the
object representations are now be bound together through the associative map
(see fig. 4).

If we want a single unit to represent the “BANG” sound in the sound map,
a single unit in the associative map has to bind together the “BANG” unit with
both the gun and the dynamite units. This associative unit must then have the
ability to perform multi-associations: It must have a strong cortical connection
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associative map

(a)

(b)

associative map

Fig. 4. A multi-association: A sound is associated with two different object, both of
which may produce this actual sound. (a) A single sound unit is connected with the
two object units by a unit in the associative map, that stands at the intersection of
two sound and object stripes: This is possible because the unit’s global connection
strength is not distributed among all connections, but only among active connections
(Widrow-Hoff rule). (b) When a unit’s global connection strength is distributed among
all connections, the sound unit must be duplicated (Hebb rule). See text for detail
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to two different units (the gun and the dynamite units) in the same cortical
stripe (see fig. 4a).

If associative units cannot perform multi-associations, the resulting self-
organization process among all maps will duplicate the “BANG” representative
unit. The reason is that, in this very case, an associative unit is able to listen to
only one unit in each connected module. Each instance of that unit will then be
bound, through its own associative unit, either to the dynamite or the gun unit
(see fig. 4b). Moreover, the two object units cannot be in the same connectivity
stripe, or else the model would try to perform multi-association and fail.

In fact, in the associative map, a unit is able to bind all possible couples of
sound and object units that are in the two cortical stripes. Reciprocally, two
given stripes of sound and object units can only be bound through a single
associative unit in the associative map, the one that stands at the intersection
of these stripes. Therefore, since our model uses a logical “AND” between the
different inputs of a unit, that single associative unit must be active each time
one of these sound and one of these objects are active together.

Thus, if a unit can only handle one association, each couple of sound and
object stripes must contain, at most, one associated object and sound couple
of units. The units that represent different object making the same sound, for
instance the dynamite and the gun, must then be on different cortical stripes
(see fig. 4a). The same is true for the two “BANG” units, which represent the
same sound. Actually, the ability of units to handle multi-associations depends
solely on the cortical learning rule used in the model, as we will now explain.
This ability is crucial in the model, as explained further.

3.2 Cortical Learning Rules Requirements for Multi-association

It is the cortical learning rule that enables, or not, a unit to be strongly connected
to many remote units in the same cortical stripe. Therefore, the cortical learning
rule is the key to solving the multi-association problem.

Let us consider first the Hebb/anti-Hebb learning rule. Using this rule, if unit
i is connected to unit j, the weight wij of the cortical connection from i to j is
updated through :

δwij = δA�
i × (A�

j − wij)

where δ is the update rate of the cortical connection weights. Thus, the connec-
tion strength wij between the local unit i and a remote unit j grows when both
i and j are active together (i.e. they are both in an A� activity bubble). wij

decreases each time the remote unit j is inactive while the local unit i is active.
Therefore, if unit i and j are always active together, wij will grow to reach

the maximum weight. Consider now the case where unit j is active, for instance,
half of the time when unit i is active, and remote unit j′ is active the other half
of that time. Both wij and wij′ will only reach half the maximum weight. Since
cortical activation is computed on the base of the wik × A�

k, the cortical input
from j (or j′) can be quite weak when A�

j (or A�
j′) is strong, just because many

A�
j′ were correlated to the A�

i activity.
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Since only the most active units are inside the A� activity bubble, a local
unit i can be active only if its cortical activities are high enough. Therefore,
because of competition, local unit i can only be active if its connection weight
to some remote unit j is high. This is the reason why, using the Hebb/anti-Hebb
learning rule, a unit i can be activated by a unit j if A�

j is the only one that is
correlated to A�

i .
This result is actually due to the following: The global connection strength

of the local unit i for a given cortical stripe is at every time distributed among
all connected remote units j. Since that connection strength must be high for
some connection, it is concentrated on a single remote unit, which means that all
other remote units are very weakly connected to the local unit. The end result
is that the local unit binds together a single remote unit per stripe connection.

As a consequence, the model cannot represent a situation where a unit in a
map should be bound with multiple units in the other remote maps: It cannot
handle multi-associations. The only way to effectively associate a given thalamic
input in a map to two different thalamic inputs in another map is to have it
represented by two different patches units (see fig. 4b).

This can be avoided if the cortical learning rule allows a unit to be strongly
associated with multiple units for each cortical stripe. A cortical learning rule
that allows this is the Widrow-Hoff learning rule.

3.3 Widrow-Hoff Learning Rule and Consequences for
Multi-association

Using a learning rule adapted from the Widrow-Hoff learning rule, if unit i is
connected to unit j, the weight wij of the cortical connection from i to j is
updated through :

δwij = δ(A�
i − ω) × (A�

i − Ac
i ) × A�

j

where δ is the update rate of the cortical connection weights, Ac
i is the cortical

activity of a unit i, and ω is the decay rate of cortical connections. Here, cortical
activity Ac

i =
∑

j wijA
�
j is seen as a predictor of A�

i . When both the local unit
i and the remote unit j are active together, if Ac

i is lower than A�
i , wij grows,

and if Ac
i is higher than A�

i , wij decreases. wij also decreases slowly over time.
Here, the global connection strength of the local unit i for a given cortical

stripe is distributed among all active remote units j, and not among all remote
units. As with the Hebb/anti-Hebb rule, because of the local competition, the
connection strength wij between i and a unit j must be high. However, here,
raising wij doesn’t imply lowering all wik for all k in the remote connection
stripe. Raising wij will only lower wik if j and k are active at the same time.

However, since only a small A� activity bubble is present on each map, most
remote units in the connection stripe cannot be active at the same time. Thus,
the local unit i can bind together multiple units in a given stripe connection to a
unit in another stripe connection. This is the reason why the use of the Widrow-
Hoff learning rule in our model leads to multi-map organization as in fig. 4a.
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Solving the multi-association problem has one main benefit: The maps need
fewer units to represent a certain situation than when multi-association between
unit is impossible. Moreover, since instances of a given thalamic input are not
duplicated in different parts of a cortical map, it is easier for the model to per-
form a compromise between the local organization and the cortical connectivity
requirements, i.e. joint organization is less constrained.

4 Model Behavior on a Simplified Example

4.1 The Phonetic-Action Association Problem

Several brain imaging studies [15] have shown that word encoding within the
brain is not only organized around purely phonetic codes but is also organized
around action. How this is done within the brain has not yet been fully explained
but we would like to present how these action based representations naturally
emerge in our model by virtue of solving constraints coming from motor maps.

We therefore applied our model to a simple word-action association. A part
of the word set from the European MirrorBot project, which is a 3 year EU-
IST-FET project, was used in a “phonetic” map, and we tried to associate these
words to the body part that performs the corresponding action. One goal of
this project is to define multimodal robotic experiments and the corresponding
protocols are consequently well suited for this task.

4.2 Phonetic and Motor Coding

The phonetic coding used in our model is taken from the MirrorBot project. A
word is separated into its constituting phonemes. Each phoneme is then coded by
a binary vector of length 20. Since the longest word that is used has 4 phonemes,
each word is coded by 4 phonemes, and if they have less, they are completed by
empty phonemes.

The distance between two different phonemes is the Cartesian distance be-
tween the coding vectors. The distance between two words is the sum of the
distances between their constituting phonemes. While we are well aware that
this is a very functional way to represent the phonetic distance between two
words, it is sufficient in order to exhibit the joint organization properties dis-
cussed in this paper.

The actions are coded in the same way as the words: There are 3 different
input actions (head action, body action and hand action), and each action is
coded as a binary vector of length 3. The distance between two actions is, once
again, the Cartesian distance between their representing vectors.

Each word is semantically associated to a specific action. The word-action
relationship is shown on figure 5.

The thalamic prototypes (i.e. external inputs) of the motor and the phonetic
units are, respectively, coded actions and coded words. However, these do not
necessarily correspond to real input words or actions: These prototypes are vec-
tor of float values, not binary ones. The prototype of a unit, in the figures of
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Body Hand

Go Lift PickMoveLook Show

Head

Fig. 5. Word-Action Relationship

this section, is represented as the nearest “real” input, in term of the distance
previously discussed.

4.3 Interest of Associative Learning

Our model fundamentally differs from a classical Kohonen map since this lat-
ter one is somehow topologically organizing information against the sole notion
of distance between inputs and prototypes. Thus if we were to use a Kohonen
map to represent words from the MirrorBot grammar (encoded as a phonetic
sequence), a consequence of the Kohonen algorithm and existing lateral interac-
tion between units would be an organization toward similarity relation of word
codes only (i.e. two words having similar code would be represented by the same
prototype or neighbor prototypes) as illustrated in figure 6. This kind of rep-
resentation is not satisfactory in the sense that it is totally disconnected from
other maps and does not take any semantics of words into account.

4.4 Emergence of Action Oriented Representation

Let us consider three maps, one for word representation, one for action repre-
sentation and finally an associative one that links word to action (cf. figure 7).

The central point of our model is that coherent learning within a map depends
on some other maps, so that the inter-map connectivity biases the convergence
to a particular self-organized state, when self-organization alone would have
allowed for many more possible ones. The final state of organization in each
map must allow the bubbles to be set up at intersecting cortical connection
stripes, solving inter-map constraints as the one illustrated on fig 2. The cortical
maps perform an effective compromise between the local and remote constraints.
Remote constraints, coming from the architecture, makes activity bubbles have
strong cortical connections to each other. Local constraints, coming from the
thalamic layers, requires bubbles of activity to raise where the phonetic or action
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Fig. 6. Two different results of word classification by a Kohonen map based on purely
phonetic representations. Words representing eye action (white), hand action (gray) or
body action (stripes) are spread all over the map without paying any attention to the
underlying semantic of words

prototypes best match the phonetic or action input. This compromise is poor at
the beginning, but it gets better as learning proceeds.

In the current word-action association, we have chosen to impose a frozen
organization to the action map, in order to illustrate how the phonetic map
self-organizes when keeping coherence with the action map. As an illustration,
let us consider the words “look” and “show”. The phonetic representations of
these words are completely different, so that a Kohonen map classifies them in
different parts of the map (cf. fig. 6). In our model, however, the higher level
associative map linking auditory representation with motor action will use close
units to represent these words, since they both relate to the same action (head
action), see “look” and “show” positions on fig. 8. As our model deals with an
implicit global coherence, it is able to reflect this higher level of association and
to overcome the simpler phonetic organization.

The interesting point to consider here is that word representations (e.g. pho-
netic map) are constrained by some topology that mimics to some extent physical
properties of effectors, i.e. a word unit is dedicated to one action (e.g. hand) and
cannot trigger another one (e.g. head). In order to solve this constraint and to
ensure a global coherence, the model must then organize word representation
in such a way that, for example, any “body” word should be linked to a body
action.

As illustrated in figure 8, we can clearly see that the topological organi-
zation found by the model meets these criteria. Within the word map, words
are grouped relatively to the body part they represent: Body action words are
grouped together (stripes) as well as hand action words (gray) and head action
words (white).



158

Word code "g@U"Unit

Stripe

Action representation

Word representation

− Hand
− Body
− Eye

Action :

Fig. 7. Schematic view of the model architecture: The word representations and the
action representations are presented in separate maps, that are both connected to an
associative map by reciprocal cortical connection stripes

However, the phonetic distribution of words remains the most important fac-
tor in the phonetic map organization. Each word is represented by a “cluster”
of close units, and the words whose phonetic representation is close tend to be
represented in close clusters of units. For instance, while “Go” and “Show” corre-
spond to different motor actions, their phonetic representations are close, so that

, F Alexandre, and H Frezza-BuetO. Ménard . .



Towards Word Semantics from Multi-modal Acoustico-Motor Integration 159

Fig. 8. Two simulation results of word representation map after coherent learning has
occurred with our model. Word representations are now constrained by the motor map
via the associative map and, as a result, words that correspond to the same action are
grouped together. Nevertheless, phonetic proximity is still kept

their representing clusters are adjacent (cf. fig. 8). This illustrates the fact that
the model is actually doing a successful compromise between the local demands,
which tend to organize the words phonetically, and the motor demands, which
tend to put together the words that correspond to the same action. The joint
organization does not destroy the local self-organization, but rather modulates
it so that it becomes coherent with the other map organization.

Finally, having this model based on the self-organization of information pro-
totypes leads implicitly to an organization that can be interpreted since it is
easy to see what a unit is tuned on. This might be useful for further qualitative
comparisons with real fMRI activations.

5 Discussion

The model presented in this paper is designed for a general cortically-inspired as-
sociative learning. It is based on the cooperation of several self-organizing maps,
that are connected one with the other. The design of this model stresses some
computational points, that keeps the model functionally close to the biology.
The first one is locality, since each unit computes its status from the units it
is connected to, without any superior managing process. This leads to the set
up of a distributed competition mechanism, whose emerging effect is the rise
of a bubble of activity at locally relevant places in the map. The second com-
putational point the model stresses is stripe connectivity between maps. From
a strictly computational point of view, this keeps the number of connections
under combinatorial explosion. Moreover, the consequent computation has more
interesting properties. Using stripes actually constraints the model to overcome
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partial connectivity by organizing the maps so that related information stands
at connected places. This is supported by resonance between cortical layers, and
leads to organize states in each map according to the organization of the maps
it is connected to. This dependency isn’t explicitly given to the model, it can
be viewed as a side effect of the shortage of connections. This effect has been
observed in our previous work [17] concerning the arm guidance, but it wasn’t
of primary importance in that context. Last, the novelty here is that our model
now uses a Widrow-Hoff learning rule, so that it manages multiple associations
between the units of the different maps in the model. Thus, multiple associations
between inputs do not anymore require a duplication of these inputs, in terms
of different units, on the model’s cortical maps.

However, in the present paper, the property of joint organization the model
exhibits is reported in the framework of semantic coding observed in cortical ar-
eas, since high level word representation appears to be organized according to the
body part the word refers to. The ability of our model to generate such kind of
organization without any supplementary specification supports its relevance as a
functional model of cortical computation, in spite of sometimes less plausible com-
putational mechanisms that keeps the model tractable for a large amount of units.

Considering self-organization of many interconnected self-organizing mod-
ules leads to discuss the organization of representations at a global level, that
may appear rather more abstract than the organization resulting from the map-
ping of a mono-modal distribution, as performed by usual unsupervised learning
techniques. In the context of autonomous robotics, that this model addresses,
anything that is learned is obviously a situated representation. Moreover, the
model makes the organization of a particular module in the architecture, dealing
with one specific modality, be understandable according to the other modules,
and more generally according to the global purpose of such an architecture to
address situated behavior. This raises the hypothesis that the influence of the
global behavioral purpose at the level of each modality representation is the very
property that endows this representation with a semantic value. Therefore, this
view of semantics, inspired from biological facts about cortical areas involved in
language, appears to be tractable by a joint organizing model, and to be more
generally suitable for any situated multimodal processing in robotics.
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Abstract. In this paper we describe two models for neural grounding
of robotic language processing in actions. These models are inspired by
concepts of the mirror neuron system in order to produce learning by
imitation by combining high-level vision, language and motor command
inputs. The models learn to perform and recognise three behaviours, ‘go’,
‘pick’ and ‘lift’. The first single-layer model uses an adapted Helmholtz
machine wake-sleep algorithm to act like a Kohonen self-organising net-
work that receives all inputs into a single layer. In contrast, the second,
hierarchical model has two layers. In the lower level hidden layer the
Helmholtz machine wake-sleep algorithm is used to learn the relation-
ship between action and vision, while the upper layer uses the Kohonen
self-organising approach to combine the output of the lower hidden layer
and the language input.

On the hidden layer of the single-layer model, the action words are
represented on non-overlapping regions and any neuron in each region
accounts for a corresponding sensory-motor binding. In the hierarchical
model rather separate sensory- and motor representations on the lower
level are bound to corresponding sensory-motor pairings via the top level
that organises according to the language input.

1 Introduction

In order to ground language with vision and actions in a robot we consider two
models, a single-layer and a hierarchical approach based on an imitation learn-
ing. Harnad 1990 and Harnad 2003 [10, 11] devised the concept of the symbol
grounding problem in that abstract symbols must be grounded or associated to
objects and events in the real world to know what they actually mean. Hence,
in order to actually attribute meaning to language there must be interaction
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with the world to provide relevance to the symbolic representation. In terms of
robotics there is a need to ground actions and visual information with symbolic
information provided by language to meaningfully portray what is meant [11].
For instance, the action verb ‘lift’ could be grounded in the real-world robot
behaviour of closing the gripper on an object, moving backward and turning
around. The importance of grounding abstract representations can be seen from
Glenberg and Kaschak 2002 [9] who found that the understanding of language
is grounded in the action, how the action can be achieved and the likelihood of
the action occurring.

Although the grounding problem is fundamental to achieve the development
of social robots, Roy [29] states that there has not been the grounding of language
in actions but abstract representations whose meaning must be interpreted by
humans. As a result limited progress has been made in the development of truly
social robots that can process multimodal inputs in a manner that grounds
language in vision and actions. For instance, robots like the tour-guide robots
Rhino [5] and Minerva [32] do not consider grounding of language with vision
and actions.

We pursue an imitation learning approach as it allows the observer robot to
ground language by creating a representation of the teacher’s behaviour, and
an understanding of the teacher’s aims [14]. As a result of the role played by
imitation learning in animal and human development there has been a great deal
of interest from diverse fields such as neuroscience, robotics, computation and
psychology. Imitation learning offers the ability to ground language with robot
actions by taking an external action and relating it with the student robot’s
internal representation of the action [30]. It is a promising approach for ground-
ing robots in language as it should allow them to learn to cope with complex
environments and reduces the search space and the number of training examples
compared with reinforcement learning [7].

In our language grounding approach we used the concepts of the mirror neu-
ron system by using multimodal inputs applied to predictive behaviour percep-
tion and imitation. Mirror neurons are a class of neurons in the F5 motor area
of the monkey cortex which not only fire when the monkey performs an action
but also when it sees or hears the action being performed by someone else [23].
Mirror neurons in humans [8] have been associated with Broca’s area which in-
dicates their role in language development [23]. Their sensory property justifies
our use of models designed for sensory systems that use self-organising learn-
ing approaches such as the Helmholtz machine wake-sleep algorithm and the
Kohonen algorithm.

2 Robot Approaches to Grounding Language in Actions

Other approaches based on imitation learning have been developed to ground
robot language in neural action. For instance, Billard 1999 [1] used the Dynamic
Recurrent Associative Memory Architecture approach when grounding a proto-
language in actions through imitation. This approach uses a hierarchy of neural
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networks and provides an abstract and high-level depiction of the neurological
structure that are the basis of the visuo-motor pathways. By using this recurrent
approach the student is able to learn actions and labels associated with them.
Experiments were performed using a doll-like robot. The robot can imitate the
arms and head movements of the human teacher after being trained to perform
a series of actions performed by the teacher and to label this series with a
name. The name is entered by using a keyboard attached to the robot. This was
also expanded to use proto-sentences such as ‘I touch left arm’ to describe the
actions. The experiments showed that the hierarchical imitation architecture was
able to ground a ’proto-language’ in actions performed by the human teacher
and recreated by the robot.

Vogt 2000 [34] considered the grounding of language in action using imitation
in robots through playing games. In the experiment two robots play various
language games while one follows the other. The robots are required to develop
various categories and a lexicon so they are able to ground language in actions
such as ‘turn left’ or ‘go forward’. The robots share the roles of teacher and
student, and language understanding is not preprogrammed. The experiments
consist of two stages. In the development stage the task is to acquire categories
and a lexicon related to the categories. In the test stage the aim is to determine
how well the robot performs the task when only receiving the lexicon. In this
phase the teacher and student swap roles after each language game. In this
imitation learning language approach only the motor signals are categorised as
the teacher and student robots have different sensory-motor signals to control
their actions. The categorisation achieved is found to be much more successful
than the naming.

In addition, a non-imitation approach to grounding language with robot
actions developed by Bailey et al. 1998 [3] investigates the neurally plausible
grounding of action verbs in motor actions, such that an agent could execute
the action it has learnt. They develop a system called VerbLearn that could
learn motor-action prototypes for verbs such as ‘slide’ or ‘push’ that allows both
recognition and execution of a learnt verb. Verb Learn learns from examples of
verb word/action pairs and employs Bayesian Model Merging to accommodate
different verb senses where representations of prototypical motor-actions for a
verb are created or merged according to a minimum description length criterion.
However, Bailey’s approach makes use of discrete values that rely on opinion
rather than on real world values.

3 Neurocognitive Evidence as Basis for Robot Language
Neural Grounding

The robot language grounding model developed in this chapter makes use of
neurocognitive evidence on word representation. The neurocognitive evidence of
Pulvermüller states that cortical assemblies have been identified in the cortex
that activate in response to the performance of motor tasks at a semantic level
[21, 23, 24]. Accordingly, a cognitive representation is distributed among cortical



Grounding Neural Robot Language in Action 165

neuronal populations. Using MRI and CT scans it was found that these semantic
word categories elicit different activity patterns in the fronto-central areas of the
cortex, in the areas where body actions are known to be processed [24, 12].

Pulvermüller and his colleagues have performed various brain imaging exper-
iments [22, 12] on the processing of action verbs to test their hypothesis on a
distributed semantic word representation. From these experiments it has been
possible to identify a distributed representation where the activation was differ-
ent between action verbs based on the body parts they relate to. It was found
that there were clustered activation patterns for the three types of action verbs
(arm, leg and face) in the left hemispheric inferior-temporal and inferior-frontal
gyrus foci. There were also however differences between these three types of
action verbs in terms of the average response times for lexical decisions. For
instance, the response time is faster for head-associated words than for arm-
associated words, and the arm-associated words are faster processed than leg
words. Consistent with the somatotopy of the motor and premotor cortex [20],
leg-words elicited greater activation in the central brain region around the ver-
tex, with face-words activating inferior-frontal areas, thereby suggesting that the
relevant body-part representations are differentially activated when words that
denote actions are being comprehended.

These findings suggest the word semantics is represented in different parts
of the brain in a systematic way. Particularly, the representation of the word
is related to the actual motor and premotor regions of the brain that perform
the action. This is evidence for distributed cortical assemblies that bind acoustic,
visual and motor information and stresses the role of fronto-central premotor cor-
tex as a prominent binding site for creating neural representations at an abstract
semantic level. Fig. 1 shows a schematic view of this distributed representation
of regions in the brain activated by leg, arm and face based on the brain imaging
experiments.

Previously, we have developed a computational model of the somatotopy of
action words model that recreates the findings on action word processing [37, 38].
This neural model shown in Fig. 2 grounds language in the actual sensor readings

leg-related words arm-related words face-related wordsleg-related words arm-related words face-related words

Fig. 1. Based on the brain imaging studies a schematic of the distributed semantic rep-
resentation in the brain of action verb processing based on the body-parts performing
them
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action representation

action and language association

word form headhand
leg

word representation

Fig. 2. A neural model of the somatotopy of action words model

from an autonomous robot. In particular, the actual sensor readings represent
semantic features of the action verbs. The approach provides a computational
implementation of distributed cell assemblies representing and processing action
words along with the actions they can refer to [22]. In the novel architecture
presented in this paper, the link between perception and production and between
action and language is set up by one single map.

4 Mirror Neuron Grounding of Robot Language with
Actions

The mirror neuron approach offers a biological explanation for the grounding of
language with vision and actions. Rizzolatti and Arbib 1998 [23], Gallese and
Goldman 1998 [8] and Umilta et al. 2001 [33] found that neurons located in the
rostral region of a primate’s F5 motor area were activated by the movement of the
hand, mouth or both. It was found that these neurons fire as a result of the goal-
oriented action but not the movements that make up this action. The recognition
of motor actions depends on the presence of a goal and so the motor system does
not solely control movement [8, 25]. Hence, the mirror neuron system produces a
neural representation that is identical for the performance and recognition of the
action [2]. Fig. 3 shows neuronal responses during recognition and performance of
object-related actions. The neurons are active during performance of the action
(shown for neurons 3 and 4) and during recognition where recognition can be
either visual or auditory.

These mirror neurons do not fire in response to the presence of the object or
mimicking of the action. Mirror neuron responses require the action to interact
with the actual object. They differentiate not only between the aim of the action
but also how the action is carried out [33]. What turns a set of movements into
an action is the goal, with the belief that performing the movements will achieve
a specific goal [2]. Such a system requires the recognition of the grasping hand
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Neuron 1
paper ripping

Neuron 2
dropping stick

Neuron 3
peanut breaking

Neuron 4
peanut breaking

vision + sound

sound

vision

.

motor

monkey call (control sound)

Fig. 3. Responses of macaque F5 mirror neurons to actions. From left to right, the
four selected neurons and the chosen stimulus which is in each case a strong driving
stimulus. From top to bottom, their responses to vision plus sound, to sound only, and
for neurons 3 and 4 to vision of the action only and to the monkey’s own performance
of the action. For neurons 1 and 2, their reaction to a control sound is shown instead.
In each little figure, the above rastergram shows spikes during 10 trials, below which
a histogram is depicted (a vertical line indicates the time of the onset of the sound or
at which the monkey touches the object). In the case of sound stimuli, an oscillogram
of the sound is depicted below the histogram. It can be seen that neurons respond to
their driving action via any modality through which they perceive the action, but not
to the control stimuli. As an exception, neuron 4 does not respond if the monkey only
visually perceives the action (from Kohler et al. 2002 [17] and Keysers et al. 2003 [15])
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and examination of its movement and an examination of the association of the
hand parameters to the position and affordance to reach the object [2].

The role of mirror neurons was to depict actions so they are understood or can
be imitated [23]. Furthermore, the mirror neuron system is held to have a major
role in the immediate imitation if an action exists in the observer’s repertoire [4].
According to Schaal et al. 2003 [31] and Demiris and Hayes, 2003 [7] imitation
learning is common to everyday life and is able to speed up the learning process.
Imitation can take the form of mimicking the behaviour of the demonstrator
or learning how the demonstrator behaves, responds or deals with unexpected
events. Complex imitation not only has the capacity to recognise the actions of
another person as familiar movements and to produce them, but also to identify
that the action contains novel movements that can be approximated by using
movements already known. Imitation learning requires learning and the ability
to take the seen action and produce the appropriate motor action to recreate
the observed behaviour [4].

An explanation proposed by Rizzolatti and Luppino 2001 [26] for the ability
to imitate through the mirror neuron system is an internal vocabulary of actions
that are recognised by the mirror neurons. Normally the action is recognised even
when the final section is hidden [25]. Understanding comes through the recogni-
tion of the action and the intention of the indiviudal. This allows the observer to
predict the future actions of the action performers and so determine if they are
helpful, unhelpful, threatening and to act accordingly [8]. Such understanding
of others’ actions also allows primates to cooperate, perform teamwork and deal
with threats. The mirror neuron system was a critical discovery as it shows the
role played by the motor cortex in action depiction [27]. Hence, the observing
primate is put in the same internal state as the one performing the action.

The mirror neuron system also exists in humans [8]. Increased excitation was
found in the regions of the motor cortex that was responsible for performing
a movement even when the subject was simply observing it. Motor neurons in
humans are thus excited when both performing and observing an action [8]. The
F5 area in monkeys corresponds to various cortical areas in humans including
the left superior temporal sulcus of the left inferior parietal lobule and of the
anterior region of Broca’s area. The association of mirror neurons with Broca’s
area in human and F5 in primates points to their role in grounding of language
in vision and actions [17]. The ability to recognise an action is required for the
development of communication between members of a group and finally speech.
It is possible that the mirror neuron system was firstly part of an intentional
communication system based on hand and face gestures [17] and then in a lan-
guage based system [23]. Once language became associated with actions it was
no longer appropriate for it to be located in the emotional vocalisation centre. It
would emerge in the human Broca’s area from an F5-like region that had mirror
neuron features and a gesture system. The importance of gestures reduced until
they were seen as an accessory to language [23].

Arbib 2004 [2] examined the emergence of language from the mirror neuron
system by considering the neural and functional basis of language and the de-
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velopment of the recognition ability of primates to the full language in humans.
In doing so Arbib produced a notion of language development over 7 stages:
(i) grasping; (ii) a mirror system for grasping; (iii) a simple imitation system
for object grasping; (iv) a complex imitation system that allows the recogni-
tion of a grasping action and then repeat; (v) a gesture based language system;
(vi) proto-speech and (vii) language that moves from action-object frames to a
semantic syntax based approach. Hence, evolution has enabled the language sys-
tem to develop from the basic mirror neuron system that recognises actions to a
complex system that allowed cultural development. This concept of the mirror
neurons forms the basis of our models for the grounding of robot language in
neural actions. In the remainder of this paper we will consider two models that
neurally learn to perform the grounding of language with actions.

5 Methods and Architectures

A robot simulator was produced with a teacher robot performing ‘go’, ‘pick’ and
‘lift’ actions. The actions were performed one after another in a loop in an envi-
ronment (Fig. 4). The student robot observed the teacher robot performing the
behaviours and was trained by receiving multimodal inputs. These multimodal
inputs were (i) high-level visual inputs which were the x and y coordinates and
the rotation angle ϕ of the teacher robot relative to the front wall, (ii) the mo-
tor directions of the robot (‘forward’, ‘backward’, ‘turn left’ and ‘turn right’)
and (iii) a symbolic language description stating the behaviour the teacher is
performing (‘go’, ‘pick’ or ‘lift’).

The first behaviour, ‘go’, involves the robot moving forward in the environ-
ment until it reaches a wall and then turns away from it. The coordinates x and
ϕ ensure that the robot avoids the wall, irrespective of y. The second behaviour,
‘pick’, involves the robot moving toward the target object depicted in Fig. 4 at
the top of the arena. This “docking” procedure is produced by a reinforcement
approach as described in [36] and uses all, x, y and ϕ coordinates. The final
behaviour, ‘lift’, involves moving backward to leave the table and then turning
around to face toward the middle of the arena. Coordinates x and ϕ determine
how far to move backward and in which direction to turn around. These coordi-
nates which are shared by teacher and learner are chosen such that they could
be retrieved once the imitation system is implemented on a real robot.

ϕ

y

x

Fig. 4. The simulated environment containing the robot at coordinates x, y and rota-
tion angle ϕ. The robot has performed ten movement steps and currently turns away
from the wall in the learnt ‘go’ behaviour
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When receiving the multimodal inputs corresponding to the teacher’s actions
the student robot was required to learn these behaviours so that it could recog-
nise them in the future or perform them from a language instruction. Two neural
architectures were considered.

5.1 Single-Layer and Hierarchical Architectures

Both imitation models used an associator network based on the Helmholtz ma-
chine approach [6]. The Helmholtz machine generates representations of data
using unsupervised learning. Bottom-up weights W bu generate a hidden repre-
sentation r of some input data z. Conversely, top-down weights W td reconstruct
an approximation of the data z̃ from the hidden representation. Both sets of
weights are trained by the unsupervised wake-sleep algorithm which uses the
local delta rule. Parameterised by a sparse coding approach the Helmholtz ma-
chine creates biologically realistic edge detectors from natural images [35] and
unlike a pure bottom-up recognition model [18] produces also the generative
model of the data via neural connections. This is used during testing when we
regard either the language area or the motor area as the model’s output.

These two models’ multimodal inputs included the higher-level vision which
represents the x and y coordinates and rotation angle ϕ of the teacher robot,
a language input consisting of a 80-dimensional binary phoneme representation
and the motor directives of the four motor units as input.

For the single-layer model all inputs are fed into the hidden layer at the same
time during training. The hidden layer of the associator network in Fig. 5 that
acted as the student robot’s “computatioal cortex” had 16 by 48 units. The
sparse coding paradigm of the wake-sleep algorithm leads to the extraction of
independent components in the data which is not desired since many of these
components would not span over multiple modalities. Therefore we augmented
the sparsity toward a winner-take-all mechanism as used in Kohonen networks
[18]. The drawback, however, of this winner coding is that the activation of
just one unit must account for all input modalities’ activations. So if there is a
variation in just one modality, for example if an action can be described by two

a)

y

ϕ
x

high−level
vision

hidden area

language

motor
action

b)

x y

ϕ

SOM area

language
HM area

motor
action

vision
high−level

Fig. 5. a) A single-step (3-to-1) architecture. b) A two-layer hierarchical architecture.
Bottom-up weights are depicted dark, top-down weights light
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different words, then twice as many units are needed to represent this action.
This inefficiency motivates the hierarchical model.

In the hierarchical model there is the association of the motor and high-level
vision inputs using the first hidden layer, denoted HM area, which uses sparse
but distributed population coding. The activations of the first hidden layer are
then associated with the language region input at the second hidden layer, de-
noted SOM area. The first hidden layer uses a Helmholtz machine learning algo-
rithm and the second hidden layer uses Kohonen’s self-organising map learning
algorithm. Such an architecture allows the features created on the Helmholtz
machine hidden layer to relate a specific action to one of the three behaviours
given the particular high-level visual information to “flexible” associations of
pairs/patterns of activations on the hidden area.

5.2 Processing of Data

On the language region representations of phonemes were presented. This ap-
proach used a feature description of 46 English phonemes based on the phonemes
in the CELEX lexical databases (http://www.kun.nl/celex/). Each of the
phonemes was represented by 20 phonetic features, which produced a differ-
ent binary pattern of activation in the language input region for each phoneme.
These features represent the phoneme sound properties for instance voiced or
unvoiced, so similar phonemes have similar structures. The input patterns rep-
resenting the three used words are depicted in Fig. 6.

The higher-level vision represents the x and y coordinates and rotation angle
ϕ of the teacher robot. The x, y and ϕ coordinates in the environment were
represented by two arrays of 36 units and one array of 24 units, respectively. For
a close distance of the robot to the nearest wall, the x position was a Gaussian of
activation centred near the first unit while for a robot position near the middle
of the arena the Gaussian was centred near the last unit of the first column of
36 units. The next column of 36 units represented the y coordinates so that a
Gaussian centred near the middle unit represented the robot to be in the centre
of the environment along the y axis. Rotation angles ϕ from −180o to 180o

were represented along 24 units with the Gaussian centred on the centre unit if
ϕ = 0o.

As final part of the multimodal inputs the teacher robot’s motor directives
were presented on the 4 motor units (forward, backward, turn right and turn
left) one for each of the possible actions with only one active at a time. The
activation values in all three input areas were between 0 and 1.

g @ U p I k l I f t

Fig. 6. The phonemes and the corresponding 4×20-dimensional vectors representing
‘go’, ‘pick’ and ‘lift’
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During training the models received all the inputs, however when testing,
either the language area or the motor inputs were omitted. The language input
was omitted when the student network was required to take the other inputs
that would be gained from observing the teacher robot and recognise the be-
haviour that was performed. Recognition was verified by comparing the units
which are activated on the language area via the top-down weights W td (Fig. 5)
with the activation pattern belonging to the verbal description of the corre-
sponding behaviour. The motor input was omitted when the student robot was
required to perform the learnt behaviours based on a language instruction. It
then continuously received its own current x, y and ϕ coordinates and the lan-
guage instruction of the behaviour to be performed. Without motor input it had
to produce the appropriate motor activations via W td which it had learnt from
observing the teacher to produce the required behaviour.

The size of the HM hidden layer is 32 by 32 units and the SOM layer has
24 by 24 units. The number of training steps was around 500000. The duration
of a single behaviour depended on the initial conditions and may average at
around 25 consecutive steps before the end condition (robot far from wall or
target object reached) was met.

5.3 Training Algorithms

The algorithms used the Helmholtz machine [6] and the self-organising map
(SOM) algorithm [18] generate internal representations of their training data
using unsupervised learning. Bottom-up weights W bu (Fig. 5) generate a hidden
representation r of some input data z. Conversely, top-down weights W td an used
to reconstruct an approximation z̃ of the data from the hidden representation.

The characteristic of the SOM is that each single data point is represented
by a single active (“winning”) unit on the hidden area, thus only one element of
r is non-zero. The network approximates a data point by this unit’s weights. In
contrary, the canonical Helmholtz machine’s internal representation r contains
a varying number of inactive and active, binary stochastic units. A data point
is thus reconstructed by a linear superposition of individual units’ contributions.
Their mean activation can be approximated using a continuous transfer function
instead of binary activations. Furthermore, by changing transfer function param-
eters the characteristics can be manipulated such that units are predominantly
inactive which leads to a sparse coding paradigm. At the extreme (that would in-
volve lateral inhibition) one unit might only be allowed to become active at a time.

The learning algorithm for the single-layer model and the HM layer of the
hierarchical model is described in the following and consists of alternating wake-
and sleep phases to train the top-down and the bottom-up weights, respectively.

In the wake phase, a full data point z is presented which consists of the full
motor, higher-level vision and in the case of the single-layer model also language.
The linear hidden representation rl = W buz is obtained first. In the single-layer
model, a competitive version rc is obtained from this by taking the winning unit
of rl (given by the strongest active unit) and assigning activation values under
a Gaussian envelope to the units around the winner. Thus, rc is effectively a
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smoothed localist code. On the HM area of the hierarchical model, the linear
activation is converted into a sparse representation rs using the transfer function
rs
j = eβxj /(eβrl

j + n), where β = 2 controls the slope and n = 64 the sparseness
of firing. The reconstruction of the data is obtained by z̃ = W td rc/s and the
top-down weights from units j to units i are modified according to

Δwtd
ij = η r

c/s
j · (zi − z̃i) (1)

with an empirically determined learning rate η = 0.001. The learning rate was
increased 5-fold whenever the active motor unit of the teacher changed. This was
critical during the ‘go’ behaviour when the robot turned for a while in front of a
wall until it would do its first step forward. Without emphasising the ‘forward’
step, the student would learn only the ‘turn’ command which dominates this
situation. Behaviour changes are significant events [13] and neuroscience evidence
supports that the brain has a network of neurons that detect novel or significant
behaviour to aid learning [16, 19].

In the sleep phase, a random hidden code rr is produced to initialise the ac-
tivation flow. Binary activation values were assigned under a Gaussian envelope
centred on a random position on the hidden layer. Its linear input representation
zr = W tdrr is obtained, and then the reconstructed linear hidden representation
r̃r = W buzr. From this, in the single-layer model we obtain a competitive version
r̃c by assigning activation values under a Gaussian envelope centred around the
winner. In the HM area of the hierarchical model, we obtain a sparse version r̃s

using the above transfer function and parameters on the linear representation.
The bottom-up weights from units i to units j are modified according to

Δwbu
ji = ε (wbu

ji − zr
i ) · r̃c/s

j (2)

with an empirically determined learning rate ε = 0.01.
The learning rates η and ε were decreased linearly to zero during the last

quarter of training in order to reduce noise. All weights W td and W bu were
rectified to be non-negative at every learning step. In the single-layer model, the
bottom-up weights W bu of each hidden unit were normalised to unit length. In
the HM area of the hierarchical model, to ensure that weights did not grow too
large, a weight decay term of −0.015 ·wtd

ij is added to Eq. 1 and −0.015 ·wbu
ji to

Eq. 2.
Only the wake phases of training involved multimodal inputs from the motor,

higher visual and language regions z based on observing the actions of the teacher
robot performing the three behaviours. The sleep phases on the other hand use
only random initial activations.

The SOM area of the hierarchical model was trained by the classical self-
organising map algorithm [18]. The hidden representation o is in our model the
activation vector on the SOM area while its input data i is the concatenated
vector from the language input together with the HM area activation r. Only the
bottom-up weights, depicted dark in Fig. 5 b), are trained. Top-down weights
are not modelled but can formally be obtained from the bottom-up weights by
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taking the transpose of the weight matrix. Training of the SOM area weights
was done after the HM area weight learning was completed.

The representation ok of unit k is established by determining the Euclidean
distance of the weight vector to its inputs, given by: ok = ‖wk − i‖. The
weights are originally randomised and hence a unit of the network will react
more strongly than others to a specific input representation. The winning unit is
the unit k

′
where the distance ok′ is smallest. The weight vector of this winning

unit k
′

as well as the neighbouring units are altered based on the following
equation which leads to the weight vectors resembling more the data:

Δwkj = αTkk′ · (ij − wkj).

The learning rate α was set to 0.01. The neighbour function was a Gaussian:
Tk,k′ = exp(−d2

k,k′ /2σ2), where dk,k′ is the distance between unit k and the

winning unit k
′
on the SOM area grid.

At the beginning of training, a larger neighbourhood (σ = 12) achieved broad
topologic learning following a reduction during training to (σ = 0.1). Additional
finer training was done with smaller neighbourhood interaction widths by reduc-
ing σ from 0.1 to 0.01.

6 Single-Layer Model Results

The single-layer associator network imitation learning robot performed well when
recognising the behaviour being performed by the teacher robot and performing
the behaviour based on a language instruction. Recognition was tested by the
network producing a phonological representation on the language area which
was compared to the appropriate language instruction.

Furthermore, when considering if the trained student robot was able to pro-
duce a certain behaviour requested by a language input, the movement traces
in Fig. 7 on the next page show that when positioned in the same location the
robot performs these different behaviours successfully.

‘go’ ‘pick’ ‘lift’

Fig. 7. The simulated trained student robot performance when positioned at the same
point in the environment but instructed with different language input. The robot was
initially placed in the top middle of the arena facing upward. In the ‘go’ behaviour it
moves around the arena; during ‘pick‘ it approaches the middle of the top wall (target
position) and then alternates between left- and right turns; during ‘lift’ it moves back
and then keeps turning
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‘go’ ‘pick’ ‘lift’ all

Fig. 8. Trained weights W td to four selected language units of the student robot. Each
rectangle denotes the hidden area, dark are strong connections from the corresponding
regions. Each of the three left units is active only at one input which is denoted above.
The rightmost unit is active at all language words

forward backward right left

Fig. 9. The trained weights W td to the four motor units of the student robot. As
in Fig. 8 the regions from which strong connections originate in the hidden area are
depicted dark

Fig. 8 indicates that the three behaviours are represented at three separate
regions on the hidden area. In contrast, the four motor outputs are represented
each at more scattered patches on the hidden area (Fig. 9). This indicates that
language has been more dominant in the clustering process.

7 Hierarchical Model Results

First, we have trained a HM area to perform a single behaviour, ‘pick’, without
the use of a higher-level SOM area. The robot thereby self-imitates a behaviour

a)

left

forward

right

backward

b)
forward right leftbackward

Fig. 10. a) Left, the projections of the four motor units onto the HM area. Right, the
projections of all high-level vision inputs on to the HM area. b) Four neighbouring SOM
units’ RFs in the HM area. These selected units are active during the ‘go’ behaviour.
Circles indicate that the leftmost units’ RFs overlap with those of the ‘left’ motor unit
while the rightmost unit’s RF overlaps with the RF of the ‘forward’ motor unit
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it has previously learnt by reinforcement [36]. Example videos of its movements
can be seen on-line at: www.his.sunderland.ac.uk/supplements/AI04/.

Fig. 10 a) shows the total incoming innervation originating from the motor
units (left) and the high-level vision units (right) on the HM area. The figure has
been obtained by activating all four motor units or all high-level vision units,
respectively, with activation 1 and by displaying the resulting activation pattern
on the HM area.

It can be seen that the patches of motor innervation avoid areas of high-
density sensory innervation, and vice versa. This effect is due to competitive ef-
fects between incoming innervation. This does not mean that motor activation is
independent of sensory activation: Fig. 10 b) shows the innervation of SOM area
units on the HM area which bind regions specialised on motor- and sensory input.

The leftmost of the four units binds the “left” motor action with some sen-
sory input while the rightmost binds the “forward” motor action with partially
different sensory input. In the cortex we would expect such binding not only to
occur via another cortical area (such as the SOM area in our model) but also
via horizontal lateral inner-area connections which we do not model.

The action patterns during recognition of the ‘go’ behaviour action sequence
depicted in Fig. 4 and during its performance are shown in Figs. 11 and 12,
respectively. At first glance, the activation patterns on the HM- and SOM areas
are very similar between recognition and performance which suggests that most
neurons display mirror neuron properties.

The largest difference can be seen within performance between the two ac-
tivation steps of the HM area: in the first step it is activated from vision alone

HM area activation based on high-level vision and motor input

SOM area winner-based classification based only on HM area input

language classification by the SOM winning unit

Fig. 11. Activation sequences during observation of a ‘go’ behaviour, without language
input. Strong activations are depicted dark, and shown at ten time steps from left to
right. Circles mark the bottom-up input of the active motor unit of the teacher which
changes from ‘forward’ in the first 6 steps to ‘turn left’ during the last 4 steps (cf.
Fig. 10 b)). Language classification is correct except for the last time step which is
classified as ‘pick’ (cf. Fig. 6))
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HM area activation based only on high-level vision input

SOM area winner-based classification based on HM area and language input

reconstruction of HM area activation by the SOM winning unit

Fig. 12. Activation sequences during performance of a ‘go’ behaviour, i.e. without
motor input. The performed sequence is visualised in Fig. 4. Circles mark the region
on the HM area at each time step which has the decisive influence on the action being
performed (cf. Fig. 10)

(top row of Fig. 12) in order to perceive the robot state and in the second step it
is activated from the SOM area (bottom row of Fig. 12) in order to relay activa-
tion to the associated motor unit. The difference between these two steps comes
from the lack of motor input in the first step and the completion of the pattern
to include the motor induced activation as would come during full observation
in the second step. Naturally, the second step’s activation pattern resembles the
pattern during recognition in the top row of Fig. 11, since patterns reconstructed
from SOM units resemble the training data.

The differences in HM area unit activation patterns during recognition and
performance are thus localised at the RF site of the active motor unit. If during
training, the input differs only by the motor input (which happens if in the same
situation a different action is performed according to a different behaviour) then
the difference must be large enough to activate a different SOM unit, so that it
can differentiate between behaviours. During performance, however, the absence
of the motor input is not desired to have a too strong effect on the HM area
representation, because the winner in the SOM area would become unpredictable
and the performed action a random one.

The last row in Fig. 11 shows the activations of the language area as a result
of the top-down influence from the winning SOM area unit during recognition.
An error is made at the last time step which as far as the input is concerned (HM
area activation in top row) is barely distinguishable from the second last time
step. Note that the recognition error is in general difficult to quantify since large
parts of some behaviours are ambiguous: for example, during ‘go’ and ‘pick’, a
forward movement toward the front wall is made in large areas of the arena at
certain orientation angles ϕ, or a ‘turn’ movement near the wall toward the centre
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might also be a result of either behaviour. Inclusion of additional information
like the presence of a goal object or the action history could disambiguate many
situations, if a more complex model was used.

In the examples depicted in Figs. 11 and 12, the teacher and learner robots
are initialised at the same position. Both then act similar during the first 4 time
steps after which the learner decides to turn, while the teacher turns only after
6 time steps (see the circled areas in these figures).

8 Discussion

Each model recreates some of the neurocognitive evidence on word representation
and the mirror neuron system. While for the single layer model a single unit is
active at a specific time-step, for the hierarchical model multiple units are active.
In terms of the neurocognitive evidence it can be argued that the hierarchical
model is closer to the brain as it involves a distributed representation.

The ability of the single-layer and hierarchical model controlled robot to
both recognise an observed behaviour and perform the behaviour that it has
learnt by imitating a teacher shows the models were able to recreate one core
concept of the mirror neuron system. For instance, in the single-layer model the
student robot displays mirror neuron properties by producing similar regional
unit activation patterns when observing the behaviour and performing it, as
seen on some examples in Fig. 13. Furthermore, the achieved common “action
understanding” between the teacher and student on the behaviour’s meaning
through language corresponds to the findings in the human mirror neuron system
expressed by Arbib [2] whereby language would be allowed to emerge.

With regard to the hierarchical model it is suggested to identify the HM area
of the model with area F5 of the primate cortex and the SOM area with F6. F5
represents motor primitives where the stimulation of neurons leads to involuntary
limb movements. F6 rather acts as a switch, facilitating or suppressing the effects
of F5 unit activations but it is itself unable to evoke reliable and fast motor
responses. In our model, the HM area is directly linked to the motor output and
identifiable groups of neurons activate specific motor units while the SOM area

‘go’ ‘pick’ ‘lift’

a)

b)

Fig. 13. Activations for the associator network summed up during short phases while
the student robot a) correctly predicts the behaviours and b) performs them based on
a language instruction
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represents the channel through which a verbal command must pass in order to
reach the motor related HM units.

Mirror neurons have so far been reported in F5. By design, the hierarchical
model uses the HM area for both, recognition and production, so an overlap in
the activation patterns as observed in mirror neurons is expected. This overlap
is mainly due to those neurons which receive high-level vision input. This per-
ceptual input is tightly related to the motor action as it is necessarily present
during the performance of an action and contributes to the “motor affordances”
[8]. The decisive influence on the motor action, however, is localised in our model
on smaller regions on the HM area, as defined by the motor units’ receptive fields
(Fig. 10 a)). The units in these regions would correspond to the canonical mo-
tor neurons which make up one third of F5 neurons. These non-mirror neurons
have only motor control function and are not activated by action observation
alone.

A prediction of our model would then be that if the visually related mirror
neurons alone are activated, e.g. by electrode stimulation, then neurons down-
stream would not be directly excited and no motor action would take place. It
is, however, difficult to activate such a distinguished group of neurons since hor-
izontal, lateral connections in the cortex are likely to link them to the canonical
motor neurons.

9 Conclusion

We have developed both a single-layer and an hierarchical approach to robot
learning by imitation. We considered an approach to ground language with vi-
sion and actions to learn three behaviours in a robot system. The single-layer
model relies on a competitive winner-take-all coding scheme. However, the hi-
erarchical approach combines a sparse, distributed coding scheme on the lower
layer with winner-take-all coding on the top layer. Although both models of-
fer neural based robot language grounding by recreating concepts of the mirror
neuron system in region F5, the hierarchical model suggests analogies to the
organisation of motor cortical areas F5 and F6 and to the properties of mirror
neurons found in these areas. In doing so it provides insight to the organisa-
tion and activation of sensory-motor schemata from a computational modelling
perspective. Considering functional processing logics it explains the position of
mirror neurons connecting multiple modalities in the brain. This hierarchical
architecture based on multi-modal inputs can be extended in the future to the
inclusion of reward values that are also represented in cortical structures [28] to
achieve goal driven teleological behaviour.
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Abstract. Presented is a spiking neural network architecture of human
language instruction recognition and robot control. The network is based
on a model of a leaky Integrate-And-Fire (lIAF) spiking neurone with Ac-
tive Dendrites and Dynamic Synapses (ADDS) [1, 2, 3]. The architecture
contains several main modules associating information across different
modalities: an auditory system recognising single spoken words, a visual
system recognising objects of different colour and shape, motor control
system for navigation and motor control and a working memory. The
main focus of this presentation is the working memory module whose
function is sequential processing of word from a language instruction,
task and goal representation and cross-modal association of objects and
actions. We test the model with a robot whose goal is to recognise and ex-
ecute language instructions. The work demonstrates the potential of spik-
ing neurons for processing spatio-temporal patterns and the experiments
present spiking neural networks as a paradigm which can be applied for
modelling sequence detectors at word level for robot instructions.

1 Introduction

Being the foremost attribute of human intelligence, language is a particularly
challenging and interesting task. It emerged within a rich problem space and
the task of language processing in the brain is performed by mapping inherently
non-linear patterns of thought onto linear sequence of signals, under a severe
set of processing constraints from human perception, motor co-ordination and
production, and memory [4].

There have been two major directions for studying the representational and
functional processing of language in the brain: the emergent language skills of
humans, e.g. innate vs. learnt [5]; and the effects of language impairment such
as those due to brain injury, e.g. aphasia [6, 7]. Recent advances in neuroscience
and brain imaging have allowed us to open a third route into understanding
the language mechanisms in the brain. Constraints over the computational and
representational mechanisms in the brain involved in language can be derived

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 182–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Spiking Neural Network Model of Multi-modal Language Processing 183

from many studies on single neuron function and plasticity paradigms, neuronal
ensembles organisation and processing, working memory, etc. [8]

In parallel with the neuro-psychological and linguistic aspects, computational
simulations constitute a very important part of language studies - helping to un-
derstand the representational and functional language processes in the brain.
There is a broad range of open questions that need an adequate answer before
we reach any significant success in our computational models. Such questions
include very precise biophysics or biochemistry problems of single neurons, as
well as many interdisciplinary ones within the Nature v Nurture debate, local-
ist and distributed representational/functional paradigms, language localisation
and plasticity paradigms and finally many questions arise in the application and
theoretical levels of linguistics, psychology and philosophy.

Within recently published work on language, cognition and communicative
development in children with focal brain injury [9, 10], the favourite viewpoint of
brain organisation for language has changed. Many scientists have taken a new
consensus position between the historical extremes of equipotentiality [11] and
innate pre-determination of the adult pattern of brain organisation for language
[12]. However, there is still not a definite understanding of the levels of innateness
and plasticity in the brain. In our approach we consider possible partial innate
architectural or processing constraints in the language system, but emphasise on
the development of the language skills.

Modularity
Early studies on language included mainly work in linguistics and psychology. In
the late nineteenth century contribution into the field came from the neurologists’
findings of “affections of speech from disease of the brain” [13], a condition known
as aphasia. After a stroke or tumour, adults who have been fluent in speaking and
understanding their native language, were sometimes found to acquire severe and
specific deficiency in language abilities. Major brain areas have been identified
as a result of aphasia studies, including the speech production and language
comprehension areas of Broca [14] with lesions resulting in motor aphasia, and
Wernicke [15] where possible trauma can lead to sensory aphasia. Some proposals
have even argued for quite specific aphasia types and therefore some possibly
very specialised language-related areas in the brain [16]. It has been accepted
that the main language areas normally reside in the dominant (usually the left)
hemisphere of the human brain. While some early language models even assign
the two main language functions syntax and semantic processing to the Broca’s
and Wernicke’s regions, and some others distribute the functionality of these
two areas for language production and comprehension respectively, later neural
models of human language processing appeal for a much wider functional and
encoding network [8].

The converging evidence shows that it is unlikely that there are areas in
the brain specialised only for specific language functions independent of other
language areas, e.g. speech production centre (inferior frontal area of Broca)
and entirely separate and independent language comprehension centre (superior
temporal area of Wernicke). These two areas are the most critical for language
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processing in the brain and appear to be functionally interdependent. A fluent
and unimpaired language processing requires a wider network of regions in the
brain. The functionality and knowledge necessary for language comprehension
or production, are not entirely available in these two regions, and thereby the
language skills cannot be exclusively assigned to that region. For example, pa-
tients with left-dominant language hemisphere and brain lesions in the right
hemisphere, would also exhibit some selective language deficiencies with words
from specific categories, e.g. words related to actions or words related to visual
perceptions [17]. In summary, the language skills are dominantly implemented
in one hemisphere (usually the left), with the pre-frontal areas playing critical
part, and a network of additional regions in the brain including some from the
non-dominant hemisphere are necessary for complete language functionality [18].

Neuroimaging studies confirm that both classical language areas Broca’s and
Wernicke’s become active during language task and both areas are necessary
for both language production and language comprehension tasks. At the same
time, as mentioned earlier, neither of these areas alone is sufficient for language
processing. It is clear though that both areas play a central role in all language
tasks. As Ojemann [19] points out, the language system involves both essential
areas, as well as neurons widely distributed across the cortex (including event
the non-dominant hemisphere), while at the same time, the evidence for clear
distinction of separate systems for speech production and speech perception is
less clear.

Further support of the distributed nature of language areas in the brain
come from brain imaging studies of bilingual subjects [20, 21, 22, 23, 24] showing
that the language mechanism in the left temporal lobe is more activated by the
native language than be any lesser known secondary language. Such studies have
shown that only bilinguals who learnt their second language early enough and
had enough practice in both languages have overlaying areas of both languages in
contrast to subjects who have learnt their second language later in their life and
have been found to activate two non-overlapping subregions in Broca’s area [25].
In some recent studies for the task sentence comprehension, the critical factor
has been shown to be the level of fluency in both languages rather that the time
(age) they have been learnt. Studies with higher spatial resolution revealed that
even with one brain region for the languages there might be smaller-scale circuits
specialised for each particular language [23, 25].

Distributed word representations
The question of the areas in the brain where words are represented and processed
has been address in many studies. Although there is still some dispute over the
exact areas involved [26], significant advances have been made recently. Many
brain imaging studies reveal that a number of areas outside the classical language
area become active during a word processing task. Thus many brain areas in ad-
dition to the classical Broca’s and Wernicke’s areas are now considered related to
and important for language processing. One of the first models covering a number
of brain areas was proposed by Freud [27] suggesting that words are represented
in the brain by multi-modal associations between ensembles of neurons in differ-
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ent cortical areas. Freud’s idea was not very well received at the time, but now it
is in the core of many recent computational and experimental neuroscience based
theories of language. Recent metabolic and neurophysiological imaging studies
have shown that words are organised as distributed neuron ensembles that differ
in their cortical topographies [28]. Evidence of merging miltimodal sensory per-
ceptions [29, 30], sensory information of one modality being able to modulate the
responses of cortical circuits in the areas of another [31, 32, 33, 34] and of cortical
cells with multi-modal response properties [35, 36, 37] supports the idea that the
cortex is an information merging computational device which uses neurons rep-
resenting and processing information from various sensory and motor modalities.
Furthermore, the neuroanatomical cortical connectivity patterns show that links
between the primary areas are not direct and often include more than one route
involving several non-primary areas. The merging of multi-modal information is
therefore not necessarily done through direct links between the primary areas of
the modalities involved [38, 39, 40], but rather via intervening cortical areas [41]
allowing complex mapping of sensory/motor patterns.

Simultaneous speech input naming an object and visual input from observ-
ing that object can activate the auditory and visual representations of the word
and the object itself [42]. This will lead to associations between the auditory and
visual representations of the word, forming a distributed, cross-modal cell assem-
bly representing the word/object. Similarly, associations between the auditory
representation of an action verb and motor representations of that action can
be associatively combined to form cell assemblies for actions/verbs. Continuing
further, objects which are strongly related to some action could be represented
by cross-modal cell assemblies including the auditory representation of the word,
the visual representation of the object and the motor representation of the ac-
tions associated with the object. Similar argument can be put forward for words
which do not map directly to visual appearances or motor actions. Such words
are usually learnt based on the context within which they appear. In such cases,
the building of the word cell assembly representing such word can be formed
based on the statistical grounds. There are two possible cases here. The first
type of words are learnt from the context within which they appear. The mean-
ing of such words can be defined by a number of other words with which they
frequently appear [43]. The auditory representation of such a word will often
be simultaneously active with the multi modal (vision and/or motor) represen-
tations of the words which built the context (if such exist) and consequently
the frequently active neuronal assemblies in these areas will become associated.
Thereby, we can assume the such words will also be represented by cell assem-
blies occupying different cortical areas, and possibly different modalities. The
second type of word, so called functional words is represented by cell assemblies
covering cortical areas in the left Broca’s region [44]. The learning of such words
will acquire neuronal ensembles which are derived from the syntax and in some
cases the semantics of the context within which they occur.

Considering the gradual language learning in children and incremental acqui-
sition of the lexicon, it can also be argued that such a mechanism of associative
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learning and word cell assemblies will lead to shared representations, i.e. com-
mon neurons in the cell assemblies representing word with similar semantics,
functional role or pronunciation. It particular that will be the case with seman-
tically similar words which have been learnt in the same context, or have served
to build the new meaning of one another.

How infants/children learn the phonetic construction of words can be ex-
plained by the correlation learning principles. During early language acquisition,
only a relatively small number of word forms are learnt from single word repeti-
tions [45]. The phoneme-to-word associations for nearly all learnt word has to be
derived from a continuous stream of phonemes, usually without acoustic clues of
inter-word intervals. The reoccurring phoneme sequences constituting a word can
be isolated/distinguished from the rest of the acoustic/phoneme stream based
on statistical discrimination [46, 47, 48]. Young infants can distinguish phoneme
sequences which constitute familiar words from the surrounding sounds [49] and
it is quite plausible that they use the co-occurrence correlation statistics and
mutual information of phonemes and syllable sequences in this process [50].

One of the earliest elements of learning word representation in the brain
appear with the babbling - the earliest sign of language-like articulation per-
formed by infants old six months or more [51]. Soon after acquiring this ability,
the infant is able to repeat words spoken by others [52]. Early babbling and
word-like production are believed to activate cortical areas in the inferior frontal
lobe, including inferior motor cortex and adjacent pre-frontal areas. At the same
time, these sounds activate the neurons in the auditory system, including areas
in the superior temporal lobe. The parallel activation of these cortical areas al-
lows the association of the cortical representation of motor programmes for the
production of particular sounds and the auditory representation of the percep-
tion of such sounds. Such association constitutes a building block in a word cell
assembly including the two modality specific representations of the same word.

Another interesting question is when are the words being recognised by the
brain. Many studies have worked on this question by contrasting brain responses
to word and pseudo-word stimulus. The word recognition point is the earliest
point in time at which the subject is presented with enough information to
make decision/distinction [53]. There are strong indications for particular set of
high frequency responses with start/end and peak timings relative to the word
recognition point.

Some neurophysiological studies have found word-related high frequency
(gamma band) cortical responses around 400 ms after the recognition point
of spoken words [42]. Other studies have found word/pseudo-word differences of
event-related potentials of cortical activity around 100-200 ms after the onset
of visually presented stimuli [54]. These results indicate relatively early and fast
word discrimination in the brain.

A number of neuroimaging studies have shown that auditory stimulus can
activate at least part of the cell assemblies representing the word in the absence
of auditory attention [55, 56, 57, 58], indicating that word/pseudo-word distinc-
tion can use sensory information alone, and perhaps be performed in the early
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perceptual stages. While considering these results, it should be noted that the
word/pseudo-word discrimination is a relatively simple task in the initial stages
of language processing, and that further word recognition and language compre-
hension task would require attention. Furthermore, since attention modulates
the activity patterns in the primary areas, learning cross-modal associations will
require the attentive process.

Interesting constraints on the representational and processing language mech-
anisms in the brain can be seen in the theories presenting the potential evolution-
ary development of the brain structure related to language developed by Aboitiz
and Garicia[59] and Rizzolatti and Arbib [60]. A number of these constraints
have been incorporated in the model presented in this work.

Aboitiz and Garicia see the Wernicke’s area in the superior temporal lobe as
the zone for cross-modal associations which link the phonological loop with ob-
ject/action representations in other sensory/motor areas. Their model is based
on phonological-rehearsal device (phonological loop) across Broca’s and Wer-
nicke’s regions which could express simple syntactic regularities. Another main
hypothesis in their work is that language processing is closely linked to working
memory in two main aspects: (1) in terms of anatomical arrangement of the
neural circuits involved, e.g. the mapping of multi-modal concepts in Wernicke’s
and phonological sequences; and (2) in terms of operating within an efficient
working memory system, e.g. gradual context building and maintenance.

Rizzolatti and Arbib suggest that the development of the human lateral
speech circuit in the Broca’s area is a consequence of the fact that this area
was previously associated with a mechanism of recognising observed actions.
They argue that this mechanism is the neural prerequisite for the development
of inter-individual communication and finally speech [61, 62, 63, 64, 65]. The ros-
tal part of ventral pre-motor cortex (area F5) in monkeys is seen as the analog
of human Broca’s area [66, 60, 67]. This area contains a class of neurons (called
mirror neurons) that do not become active just when an action is performed, but
also respond when the same specific action is observed [68, 69, 70, 71]. Most of the
neurons are highly selective and respond only to a particular action, with some
coding not only the action but also how it is performed. Furthermore, the same
mirror neurons respond to the same action also when it is internally generated.
Such an observation/execution matching system is suggested to be the bridge
from “doing” to “communicating”, i.e. the link between sender and receiver.
Significantly, mirror neurons in monkeys have also been found to associate be-
tween an action and the acoustic perceptions related to the actions [72, 73, 74],
e.g. the sound of breaking a nut. The authors stress that the mirror neurons
are not innate, but in fact they are learnt representations of recognised actions
or methods of performing acquired actions. Another important point which the
authors note is that the full system of communicating and understanding be-
tween human is based on a far richer set of brain mechanisms than the core
“mirror neuron system for grasping” which is shared by monkeys and human
[75]. One further conclusion from their work is that the Broca’s areas would
encode “verb phrases” and constraints about the noun phrases that can fill the
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slot, but not information about the noun phrases themselves. This knowledge
(objects or noun phrases) could be completely outside Broca’s area, for example
in the temporal lobe.

Some related computational models for language processing
Most of the related computational models of language processing have been
based on associative learning, following the view that language should not be
processed in isolation [76, 77, 78]. Similar to the brain where a language process-
ing is related to actual interaction with the environment in conjunction with
internal constraints, computational language systems should be able to ground
objects and actions to their perceptions and affordances.

Recent experimental and modelling work has taken a direction of embodiment
of a cognitive system as a device capable of perceiving the environment as well
as reacting based on interpretation of sensory information and internal drives.
Such paradigm incorporates substantial part of the field of Intelligent Robotics,
and represents a new opportunity for development of novel types of cognitive
systems understanding natural language.

In their work on the Talking Heads experiment and the AIBO’s communi-
cation skills, Steels and Kaplan successfully present the hypothesis that basic
language communication skills can be “bootstrapped in a social learning process
under the strong influence of culture” [79, 80, 81]. In the earlier work, interact-
ing agents evolved a language sufficient to perform a descriptive communication
task. In subsequent experiments a robot played a game with a human and was
learning associations between the visual perception of objects and their names.
The authors argued for three main prerequisites for early language acquisition:
(1) the ability to engage in social integrations, which in turn requires abilities
like recognition of others, attentions, talking, moving, etc.; (2) the presence of a
mediator; and (3) incremental learning/acquisition of concepts.

The development of the neural architectures presented here is based on the
above evidence for language representations and processing in the brain. Mainly,
it follows the views that concepts are represented by distributed cell assemblies
across multiple areas of different modalities, with objects activating neurons in
both auditory and visual areas, and actions activating neurons in auditory and
motor areas. Furthermore, following [60], the presented architecture implements
two separate subareas of distributed representations of actions and objects: one
which encodes the action and object related constraints and another which rep-
resents the objects.

2 Overall Model Architecture

Despite the recent advances in brain imaging and recent empirical results, there
is a clear need for further developments in the theoretical framework, as well
as on computational simulations being able to approximate the existing empir-
ical results, suggest further experimental directions and make predictions for
phenomena and paradigms which are currently difficult or impossible to obtain
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Fig. 1. The overall multi-modal spiking neural network architecture. It consists of
four main interconnected modules: The auditory (A0, A1 and A2), the visual (V0, V1,
V12 and V22), the motor control (M0, M11, M12 and T0) and the central associative
and working memory modules (CA, CV, CM and W). All areas are implemented using
ADDS spiking neurones. All areas except the primary input/output (A0, V0, M0 and
T0) have been trained using the Hebbian learning algorithm presented in [2, 3]

experimentally [82]. The modelling work presented here aims to contribute to-
ward such computational models. It focused on building a model base for making
theoretical predictions about particular functionalities, as well as to provide an
architecture and integrated system for developing and testing future hypotheses.

The goal of this model and experiments is to build and test the control
mechanisms using ADDS spiking neurons [1, 2, 3]. The work involves modelling
of primary sensory areas (auditory, visual and tactile), higher cognitive functions
areas (language processing/understanding, working memory) and motor control
areas. The overall architecture is presented in figure 1.

3 Multi-modal Sensory-Motor Integration and Working
Memory

Sound and vision are processed in different parts of the brain. Nevertheless, a
spoken word describing an object and an object present in the visual field would
raise activity in the brain which leads to a coherent representation of the object
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associating the interpretation of the sound and vision, as well as features related
to other modalities, e.g. affordances related to possible actions [83, 65, 63]. Such
associations are not necessary within the same modality as well. For example,
the description of an object might contain several words which should be linked
together. The perceived visual properties of the object would usually include
colour, shape, texture, size, position, etc. These also have to be combined into
a coherent visual representation. What are the possible mechanisms that the
brain could use, and how this can be modelled using spiking neurons is one
of the central themes in this chapter. Such associations seem to be deceptively
trivial and effortless to us, but the question of what are the precise mechanisms
which our brain uses to perform the task still causes extensive debates in the
scientific community.

Lets discuss the situation where a child is playing football and is about to kick
the ball. The brain processes shape, colour and spatial information in different
areas of the visual cortex. How would the child’s visual system distinguish the
ball from other objects on the field, having to associate the round shape of the
ball with its colour, and recognise it without mixing it with the green colour
of the field or other children on the field. How would the child’s visual system
inform it about the location of the ball so that the child can approach the ball.
While approaching the ball, the brain would have to receive information about
other objects or children standing in its path, and try to avoid them. It will not
mix the position of the ball with the position of those children.

Lets extend the scenario to one in which the training coach gives an instruc-
tion to the child to kick the ball. The brain would have had to hear the words in
the coach’s instruction and interpret their meaning. Part of the instruction will
refer to the kick action, so the brain would have to associate it with the program
of the action itself. Another part of the instruction will be a description of the
ball, possibly involving one or more words (e.g. specifying the colour or the posi-
tion of the ball). The brain would have to combine and associate the meaning of
these words with the visual perception of the ball which matches the description.
In such a situation, the child’s brain will have to performs several different levels
of association, i.e. its brain will simultaneously solve many instances of the bind-
ing problem. The model presented in this chapter attempts to simulate a compu-
tational and suitably simplified interpretation of brain mechanisms underlying
the above functionality. As a cognitive system it should have the capability to
bind features together at several levels and across spatial and temporal domains.

Furthermore, a computational system supporting the above scenario will have
to address an additional cognitive task. In the above scenario, there would usually
be a short time period during which the coach’s instruction is being executed.
During that period, the child will need the maintain the task and the goal. The
brain would employ a working memory mechanism capable of maintaining arbi-
trary pattern for a short time period. The exact neural mechanisms which the
brain uses are still open questions for a debate. This chapter will review some of
the main theoretical ideas for such models and suggest one particular solution.
The model of a working memory is another major theme in the current chapter.
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3.1 The Binding Problem

The problem of feature binding is sometimes a challenge even for the real brain.
Discriminating objects is more difficult is they share the same features. Illu-
sionary conjunctions may appear under several conditions, such as in very short
visual presentation features from one object are perceived as belonging to an-
other [84, 85, 86].

The term (feature) binding problem refers to a class of problems related to how
a distributed representation of information across multiple spatial and temporal
dimensions results in coherent representations [87]. It can be seen at different
levels of complexity, spatial and temporal scales. One of the most often explored
and modelled form of binding, that of perceptual binding and binding in the
visual system in particular, is concerned with the problem of correct association
of one visual feature, such as objects shape, to another, such as location, in or-
der to build a unified and coherent description of an actual appearance of the
object [88]. The visual system also needs to perform some form of binding across
time in order to interpret object motion. Binding exists in other modalities as
well. For example, the auditory system may need binding in order to discrim-
inate the sound from a single voice in a crowd. Binding can also span across
different modalities, e.g. the sound of breaking a nut with the visual percept
of it, so that they constitute a single event. In addition to the above percep-
tual types of binding, one could speak of a higher level cognitive binding [89].
For example binding might be necessary when relating perceptions to concepts,
e.g. the visual perception of an apple to all the knowledge about it (e.g. could
eat it, its taste, etc.). Another major area where binding could play a central
role is the understanding of natural language. Binding could be necessary to
associate the phonetic and semantic representation of a word with its syntactic
role in a sentence - the slot/filler problem. Furthermore, binding might be the
mechanism of linking the different words of a sentence into a coherent mean-
ing/interpretation.

The two main types of mechanisms which have been suggested as the possible
models of the brain are combinatorial and temporal binding [89].

Although, computationally expensive, combinatorial binding has been sug-
gested as a possible mechanism being implemented in the brain as well as a
solution to the binding problem in cognitive systems [90, 91]. The idea is sug-
gests and is based on neurons with highly specialised response properties - the
“cardinal cells” [92]. The problem of gradual binding of complex features into
coherent representations can be solved by a hierarchical structure of intercon-
nected cells with increased complexity. Neurons in the early stages of the visual
system can be seen as representing low level features such as local colour and
orientation, whereas those in the higher levels can represent complex patterns
and shapes [93, 94, 95]. The concept could be further extended from perceptual,
to cross-modal and cognitive binding by considering the latest results on mir-
ror neurons. These neurons have been found to be highly selective to complex
auditory, visual and motor patterns [60, 72, 74, 73, 63].
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The temporal correlation hypothesis has been proposed as a possible solu-
tion of the combinatorial problem in neural coding [87] and is based on neuro-
physiological studies showing that neurons driven by a single stimulus respond
synchronously with oscillations in the 30-70 Hz range. Such synchronous oscilla-
tion have been observed in the visual areas [96] and between sensory and motor
regions [97, 98]

Although in most theoretical models and implementations the combinatorial
and temporal binding are seen as alternatives, there is no reason why they should
not coexist in a large scale cognitive system. In fact, considering the variety of
different types of binding which the brain has to perform, it will be unlikely if
a single mechanism is used throughout. In reality, a complex cognitive system
would require a variety of mechanisms and implementations feature binding
solutions. For example, as suggested by psychological and neurological data [84,
99] attention should also be closely linked to solving the binding problem [100].

3.2 Working Memory

The Working Memory (WM) implements mechanisms for holding information
for a short period of time, usually until an action for which that information is
necessary can be executed and is often refereed to as Short-Term Memory (STM)
or Active Memory (AM) [101]. The information which is held could be about ob-
jects or events which are either recently perceived, recalled from the Long-Term
Memory (LTM) or inferred. The neural architectures implemented here follow
the view that the WM/STM is the activated part of the LTM. Furthermore,
similar to the positions taken by [102], [59] and [63], the pre-frontal cortex is
seen as a collection of interconnected special-purpose working memory areas,
e.g. separate WMs for spatial location of objects and for object characteristics
[103] and perhaps linguistic working memory [59]. The computational analog of
the pre-frontal cortex presented here, i.e. the WM of the model, is implemented
as multiple special-purpose STM systems, interconnected and working in paral-
lel, mainly WM for actions and WM for object characteristics, interconnected
according to the affordances associating particular actions and objects.

3.3 Implementation

The Working Memory (Central) modules implement three main functions: (1)
The networks in the Central module (the AW-CA-C circuit in particular) im-
plement the simple grammar of the robot’s instruction set and the integration
of a sequence of words into a phrase (object and/or instruction); (2) The neu-
ral circuits from the Working Memory maintain the instructions given to the
robots for the period necessary for their execution; and (3) Neurons from the
central modules are the points of integration and transfer of information across
modalities.

One view on the major part of the functionality of the neural circuits in the
Central module is to achieve a number of different types of binding across the
temporal and spatial domains.
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Fig. 2. Architecture of the Central (Working Memory) module. The Central layers
interact with the other modules via CA for auditory, CV for the visual and CM for
the motor areas. One of the main functionalities is implemented in the C1 layer which
includes small clusters of neurons representing each of the words in the robot’s lexicon
(C1a sub-area for action words and C1o sub-area for objects). Lateral and feed-back
connections implement the relationship between the words in an instruction. Each
concept recognised by the robot is represented by distributed cell assemblies across
different modalities. For example the representation of go includes neurons from the
AW, CA, C1, CM and M12 areas, and entities such as box activate neurons from
AW, CA, C1, CV and VF (possibly also including VC and VS) areas. For clarity only
some inhibitory connections from AW to CA and from C1 to CA are shown. The
inhibitory connections are setup so that high inhibition prevents the neurons from
firing whereas low inhibition delays their firing. The strong inhibition from AW to
CA connects neurons representing words which have the same order position in the
instructions. The weak inhibition from C to CA connects neurons representing words
in successive position in the instruction phrases
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Language understanding: Recognising sequences of words. One of the
main goals of this work is to build a system which is able to recognise and
respond to instructions given using natural language. The first stage of this
system was presented earlier as the auditory modules recognising single words of
spoken commands. Further challenges posed by the task include the necessity to
integrate the sequence different words into a coherent instruction to be recognised
and executed by the robot.

Different neural mechanisms have been proposed as the architectures which
the real brain might use in the areas handling language processing and under-
standing. Some of the main requirement considered during the design and imple-
mentation of the computational architecture presented here are: (1) The words
forming an instruction would come in a sequence, and the mechanism should
support gradual building of the semantic information contained in the sequence
under a set of syntactic and semantic constraints; (2) The temporal structure of
a spoken sequence of words contains relatively high levels of noise, more specif-
ically, the interval between two consecutive words ranges from a few hundred
milliseconds up to a few seconds. The proposed neural mechanism should cope
with such fluctuations; (3) The mechanism should allow for insertions such as
adjectives. For example, the instructions Find box and Find red box should lead
to the same behaviour of the robot if there is a red box in front of it.

The architecture presented here derives from a model presented by Lisman
[104, 105, 106, 107, 108]. It is implemented in the CA-C1 circuit running two
nested oscillations. The oscillation representing a phrase runs in the theta range
(10 Hz for the current implementation). Within each cycle of the theta oscilla-
tion, the cell assemblies representing each of the currently active concepts spike
in a sequence forming a gamma oscillation (about 30 Hz in the current imple-
mentation).

Each cycle of the theta oscillation can include one phrase (instruction). The
start of the cycle of the theta oscillation is marked by a Central Pattern Gen-
erator (CPG) neuron in area C1 which spikes at 10 Hz and sends signals to all
C1 neurons representing words which can appear at the beginning of a phrase.
The signals generate sub-threshold membrane potentials at the C1 neurons and
alone are not sufficient to activate the assemblies. Additional input from the
neurons in CA is required for these neurons to spike. The CA and C1 neurons in
a cell assembly representing a particular concept have bidirectional connections
and formulate a reverberating oscillatory activity between the two areas. Thus,
activation of a single word constituting an instruction (or being the first word
of an instruction), e.g. go, would be as follows (figure 3: upon recognition of the
auditory input stream as the word go the AW neuron for that word will respond
with a spike burst causing several spikes in the CA neurons for go. In parallel
the inhibition from AW to CA will shut down any instruction currently held in
CA-C. One or more of the spikes generated in CA will appear sufficiently close
to the spikes in CPG. The nearly synchronous spikes from the CPG and CA
neurons will activate the neurons representing go in C1a. In return, the neurons
from C1a will activate (with some delay) the CA again as well as motor control
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Fig. 3. Working memory activity in processing the instruction Go given at time 0.
Left: At approximately 250 milliseconds the word is recognised and activates the AW
neuron representing go. The spike burst from AW activates the neurons in CA and
thereby the working memory oscillation C1a-CA. Right: Zoom in the oscillation after
the activation pattern has stabilised

neurons in CM and M12. Following the propagation of activity, the CA-C1a
neurons for the word go will oscillate with a precise frequency led by the spikes
from CPG and maintain this activity while subsequent words come in and the
instruction is being executed.

The processing of words taking second and third position in the instruction
phrases follows a similar activation patter (figure 4). The main difference is that
instead of receiving inputs from CPG, the neurons representing such words in
area C1 receive lateral inputs from the C1 neurons representing words which can
precede them in a valid instruction. For example the C1a neurons representing
left receive lateral excitatory connections from the C neurons representing go
and turn. In addition, the CA neurons for the word left will also receive low
strength fast inhibition from the C1a neurons of go and turn. This inhibition is
not sufficient to prevent the CA neurons from firing but rather to delay their
firing and ensure proper order of activation in the CA-C1 oscillations. Most
critically, the weak inhibition from C1 to CA ensures that when new words
come as input, they enter the CA-C1 oscillation at the appropriate place, i.e.
after the word which should precede them.

The architecture supports a gradual build up of the current context which
allows a wide range of fluctuations in the intervals between the consecutive words
in the input stream, including insertions. The CA-C1 oscillation maintains the
current context until the next word arrives. Upon arriving of a word from the
auditory stream (that is activation in AW), the new entity is included at the
appropriate place in the current context in accordance with the semantic and
syntactic constraints in the robot’s dictionary. This is implemented by the low
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Fig. 4. Working memory activity in processing the instruction Turn left given as a
sequence of the words turn at time 0 sec and left at 1.66 sec. Left: At approximately
250 milliseconds the first word is recognised and activates the AW neuron representing
turn. The spike burst from AW activates the neurons in CA and thereby the working
memory oscillation C1a-CA. At approximately 2 sec the word left is recognised an
enters the working memory oscillation after turn Right: Zoom in the oscillation after
the activation pattern has stabilised

inhibition from C to CA. For example, if the current context is find red and
the new input word is box, the new oscillation will be a sequential firing of
the assemblies for find red box, whereas if the current context is find box, a
subsequent input word red will be included in just before box and again lead to
the representation of find red box (figure 5). Furthermore, the architecture allows
corrections in the instruction, e.g. change in the colour or shape of the object.
Figure 6 presents an example where the colour of the object has been change
from blue to green.

Associating Language Descriptions and Visual Perceptions of Objects.
This section describes the neural mechanisms employed by the robot to under-
stand and execute instructions on finding and approaching an object. Such in-
structions are based on the find command followed by a description of the target
object. The description might fully describe the target object as having a spe-
cific colour and shape, or might include only the shape, in which case the robot
will seek an object of any colour. The execution of the commands of the type
find blue ball or find ball requires the robot to maintain in its working memory
the description of the object which it has to find and respond once the object
is recognised in the visual field. The recognition of the target object involves
two stages of matching first the shape and then the colour of the target (as
maintained in the working memory) and perceived (as recognised by the visual
module) objects. The activation of the instruction find drives the robot forward,
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Fig. 5. Working memory activity in processing the instruction Find red box (Top)
and Find box red (Bottom). In both cases the pattern of the final stable oscillation
represents the sequence find red box

while it is seeking the target object. Initially the robot move freely and avoids
any obstacles in its path. All objects which do not match the description given
in the instruction are treated as obstacles and the robot should steer around
them. Once the object whose description is being held in the working memory
has been recognised in the visual field, the robot should approach and stop in
front of it.

Distributed feature-based representations are used to encode the objects in
both working memory and visual areas. The CA-C1o neural circuits of the central
module can maintain a lexical description of the objects as part of the find
instruction. In both CA and C1o areas, each of the 3 colours and 3 shapes is
represented by a small cluster of neurons. Once activated by a language input,
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Fig. 6. Correcting the target in the instruction: Working memory activity in processing
the instruction Find blue ball followed by the word green. The final activation pattern
of the working memory is the sequence find green ball

reverberating cell assemblies containing neural clusters of a shape and possibly
colour from the working memory maintain a representation of the target object.
Each of these clusters will potentiate/inhibit target neurons in CV. At the same
time, the robot would be navigating around the environment, and while moving
around different objects from the scene will fall into the visual field. Each of
these objects would be recognised by the robot’s visual system activating the
relevant neurons in VF (for the shape), and potentiating the neurons in VC
(for the colour) and VS (for the position). If the shape of the perceived object
is the same as the shape of the object held in the working memory, the CV1
neuron corresponding to that shape will receive inputs from both C1o and VF
which is strong enough to cause a spike. That in turn will activate the VC
neuron representing the colour of the perceived object which has already been
potentiated via the dorsal stream. If the instruction does not specify the colour
of the object which the robot should find, but only the shape, then the working
memory will maintain a representation of an object which does not activate
the colour neurons in area C1o. Consequently, there will be no inhibition from
C1o to CV2 colour neurons. In such cases the activation of a VC neuron is
sufficient to fire the corresponding neuron in CV2. As a result, regardless of
the colour of the perceived object, a CV2 neuron will fire every time the shape
of the perceived and target objects match. If however, the language instruction
specifies the colour, a cluster of neurons in area C1o representing that colour will
be part of the active cell assembly representing the target object. Consequently,
the neurons in that cell assembly will inhibit the input streams from VC which
represents the other two colours and allow a CV2 neuron to fire only if the colours
represented in C1o and VC are the same. As a result, CV2 neurons will respond
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only if the colour and the shape of the perceived object match the colour and the
shape of the object described in the language instruction. Finally, spikes in CV2
will activate the already potentiated neuron in VS which, as described in the
previous section, represents the horizontal position of the perceived object in the
visual scene. The VS neurons have direct connection to the M12 motor control
neurons and can steer the robot so that the perceived object is in the centre of
the visual field. As a result the robot will navigate toward an object which has
been recognised to match the one given by the current language instruction. An
example of the Working Memory activity in approaching a target is given in the
later experimental section.

Once the robot arrives in close proximity to the target, the object does not
fit in the camera image and object recognition is no longer possible. The robot
can no longer navigate toward the object based on visual information. However,
before this situation is reached, the robot can “sense” the target object using the
front distance sensors and can be “attracted” to the object instead of treating
it as an obstacle. In a condition where the robot recognises the target object
on the visual field, and the front sensors are activated, the attractive neurons
in area M11 are activated. These neurons inhibit the obstacle avoiding repul-
sive cells in M11 and control the relative speed of the wheels so that the robot
moves forward toward the object in front. Based on the input from the attrac-
tive neurons, the robot can move within a grasping distance from the target
object.

The presented working memory and navigation architecture is partially de-
rived from known mechanisms which the brain could be using for temporal stor-
age of concepts and navigation based on multi-modal sensory information. The
architecture developed here is nevertheless, a suitably simplified and compu-
tationally optimised model of the brain mechanisms. Further extension could
possibly include models of hippocampal place and head direction cells, which
will provide the robot with much finer information about its relative position to
the target object or a landmark.

4 A Robot Executing Language Instructions

The model and experiments presented in this chapter aim at exploring the com-
putational performance of the ADDS neurons in a real environment, processing
real data and controlling a mobile robot. More specifically, this chapter presents
a models of a “remote brain” architecture of a mobile robot receiving and exe-
cuting language instructions. The overall setup is presented in figure 7. The envi-
ronment includes a mobile robot (Khepera or PeopleBot) equipped with camera
and gripper. The robots are moving using differential wheels. The robots send
real-time images to the cluster via image pre-processing workstation. Spoken lan-
guage instructions are also send to the cluster, after recording and pre-processing
at the workstation. Each robot is connected to the “remote brain” (a multi-CPU
Beowulf cluster) via wireless or tether, and receives direct control signals for the
wheels and the gripper. The robot is moving in an environment with objects of
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Fig. 7. The robot’s environment contains nine objects of different colour and shape

different shape and colour. Given a particular instruction, e.g. “find blue ball”
or “lift red box”, the task of the robot is to understand and execute it.

The system was implemented in both real Khepera robot equipped with a
drippier and a camera and the Webots simulation environment with a realistic
Khepera model. The experiments reported is this chapter were performed using
Webots where more precise control on the environment and observation of the
robot’s position and status was available. The experiments were also performed
with a real robot and qualitatively equivalent results were obtained.

5 Navigation and Language Command Execution

The first experiment tests the behavioural responses of the robot to direct com-
mands. Figure 8 shows the trajectory of the robot executing a sequence of direct
commands. The robot begins at position 0 where the command go is issued.
After a while, at position 1, the command is extended with the word left. Since
the sequence go left constitutes a valid instruction recognisable by the robot, to
word left does not replace the existing active instruction, but is rather added
to it. Further, at position 2, the word right is send to the robot. Since this in-
struction is alternative to the left one, it replaces it and the active instruction
for the robot now is go left. At position 3, the word go is sent to the robot.
Being a primary word in the instruction set, the connectivity of the WM for
this word is such that it will stop the oscillatory activity of any other word in
the WM. At this point the active instruction for the robot becomes go, and the
robot moves in a straight line. Further, at position 4, the robot is stopped and
instructed to turn right. After some delay, the instruction go is sent. Similar
to point 3, this command cancels all current instructions. As a result, the robot
stops turning and starts moving in a straight line until it is stopped at position 5.
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0 go
1 left
2 right
3 go
4 stop

turn right
go

5 stop

Fig. 8. Navigating the robot

While moving without a fixed target in the visual field, the obstacle avoiding
behaviour is active, hence the robot bounces from the green cone.

6 Finding and Manipulating Objects

Figure 9 shows the trajectory of the robot executing the instruction find ball
given at position 0. Initially, the robot follows a simple exploring behaviour, i.e.
it moves freely in the environment, avoiding walls and objects which are not
of interest, until the target object falls in the visual field and is recognised by
the robot. For the present experiment, the target object is described as a ball.
Therefore, the robot will identify as a target object the first ball which falls into
the visual field, that is the green ball visible from position 1. At that point the
robot’s movements are guided by the visual information on the relative position
of the target object and approaching behaviour. The robot moves toward the
object guided by visual information until the object falls into the range of the
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Fig. 9. Executing the instruction Find ball

30 31 32 33 34 35 36 37 38 39 40
time (sec)

AW 

CA 

C1 

CV 

VS 

Fig. 10. Working memory activity in executing the instruction Find ball at the time
when the robot first recognises the target object (position 1 on figure 9). Every time
when the robot receives an image containing the green ball, the CV neurons for shape
and colour respond. Consequently, the VS neuron corresponding to the relative position
of the current object fires steering the robot toward the target
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Fig. 11. Executing the instruction Find blue ball

front distance sensors. Shortly after this point the object’s projection of the
retina becomes too big, and it can no longer be recognised by the visual system.
Guided by sensory information received from the front distance sensors, the robot
can further move closer to the object in front, reaching a distance at which it can
use the gripper. At this point the ball can be grabbed and moved to a different
place. Figure 10 shows the spike plot of the Working Memory activity when the
robot first recognises the green ball. Following the activation of the CV1 for the
ball shape and CV2 for the green colour, the VS neurons respond steering the
robot toward the target.

Figure 11 shows the execution of the instruction find blue ball. The robot
starts from the same position as in the previous experiment. However, at po-
sition 1, the robot does not identify the green ball as the target given in the
instruction, and continues with the exploring behaviour. The blue ball is recog-
nised at position 2 and the robot approaches is directly.

Figure 12 shows the behaviour of the robot while executing instructions with
changing targets. At position 0, the robot is given instruction find red box and
starts moving around until the target object falls into the visual field. At posi-
tion 1, the robot recognises the red box and starts approaching it. At position
2, the instruction is changed. The robot receives the word sequence green box.
As a result, the instruction active in the working memory is find green box.
The robot no longer recognises the red box as a target and avoids it as an
obstacle. Later on, at position 3, the robot identifies the green box and ap-
proaches it.
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0 find red box
2 green box

Fig. 12. Executing an instruction with changing targets

7 Discussion

This chapter presented a multi-modal architecture based on ADDS spiking neu-
rons for robot control using language instructions. The central modules of the
network integrate sequences of words constituting an instruction, and associ-
ated their interpretation with relevant neural assemblies in the visual and motor
modalities. The architecture incorporates a working memory model based on
oscillatory activity of neural assemblies from different modalities. The model
implements a gradual build up of context and language instructions as subse-
quent word are sent to the robot. Furthermore, the working memory allows the
current representation of the instruction to be maintained for as long as required,
that is until a target is found, or the instruction is replaced by another one.

Being the first robot control architecture built entirely on spiking neurons,
the current model would allow a number of new behavioural and computational
experiments which provide results that could be related much closer to the pro-
cesses in the real brain. Further work with the architecture would focus on
behavioural properties of the model. For example, the current set up allows the
task and objects in the environment to be used in a reinforcement learning de-
velopment. The colours of the objects could be used for encoding the “taste”
of the robot, e.g. green and blue objects could be attractive, while red ones are
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repulsive. In addition, the shapes of the objects could be used for encoding af-
fordances, e.g. balls and boxes could be lifted, while cones cannot. In the longer
term, the experimental setup can be extended with multiple robots with imitat-
ing and swarming behaviours, which in addition will provide a rich environment
requiring more complex language instructions.
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103. Wilson, F.A., Ó Scalaide, S.P., Goldman-Rakic, P.S.: Dissociation of object and
spatial processing domains in primate prefrontal cortex. Science 260 (1993) 1955–
1958

104. Lisman, J., Idiart, M.A.P.: Storage of 7+/-2 short-term memories in oscillatory
subcycles. Science 267 (1995) 1512–1515

105. Idiart, M.A.P., Lisman, J.: Short-term memory as a single cell phenomenon. In
Bower, J.M., ed.: The Neurobiology of Computation: Proceedings of the third an-
nual computational and neural systems conference. Kluwar Academic Publishers
(1995)

106. Jensen, O., Lisman, J.E.: Novel lists of 7 2 known items can be reliably stored in
an oscillatory short-term memory network: interaction with long-term memory.
Learning and Memory 3 (1996) 257–263

107. Jensen, O., Lisman, J.E.: Theta/gamma networks with slow nmda channels learn
sequences and encode episodic memory: role of nmda channels in recall. Learning
and Memory (1996)

108. Jensen, O., Lisman, J.E.: Hippocampal sequence-encoding driven by a cortical
multi-item working memroy buffer. Trends in Neurosciences 28(2) (2005) 67–72



A Virtual Reality Platform for Modeling
Cognitive Development

Hector Jasso1 and Jochen Triesch2

1 Department of Computer Science and Engineering,
University of California San Diego, La Jolla CA 92093, USA

hjasso@cs.ucsd.edu
2 Cognitive Science Department, University of California San Diego,

La Jolla CA 92093, USA
triesch@cogsci.ucsd.edu

Abstract. We present a virtual reality platform for developing and eval-
uating embodied models of cognitive development. The platform facili-
tates structuring of the learning agent, of its visual environment, and of
other virtual characters that interact with the learning agent. It allows
us to systematically study the role of the visual and social environment
for the development of particular cognitive skills in a controlled fashion.
We describe how it is currently being used for constructing an embod-
ied model of the emergence of gaze following in infant-caregiver inter-
actions and discuss the relative benefits of virtual vs. robotic modeling
approaches.1

1 Introduction

Recently, the field of cognitive science has been paying close attention to the fact
that cognitive skills are unlikely to be fully specified genetically, but develop
through interactions with the environment and caregivers. The importance of
interactions with the physical and social environment for cognitive development
has been stressed by connectionist [7] and dynamical systems [17] approaches.

Developmental schemes are also being proposed in the field of intelligent
robotics [1, 3, 18]. Instead of building a fully working robot, a body capable
of interacting with the environment is given general learning mechanisms that
allows it to evaluate the results of its actions. It is then “set free” in the world
to learn a task through repeated interactions with both the environment and a
human supervisor.

Our motivation is to develop embodied models of cognitive development, that
allows us to systematically study the emergence of cognitive skills in naturalis-
tic settings. We focus on visually mediated skills since vision is the dominant
modality for humans. The kinds of cognitive skills whose development we would

1 This paper was presented at the 3rd International Conference for Development and
Learning, ICDL’04, La Jolla, California, USA.

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 211–224, 2005.
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ultimately like to model range from gaze and point following and other shared
attention skills over imitation of complex behaviors to language acquisition. Our
hope is that embodied computational models will help to clarify the mechanisms
underlying the emergence of cognitive skills and elucidate the role of intrinsic
and environmental factors in this development.

In this chapter, we present a platform for creating embodied computational
models of the emergence of cognitive skills using computer-generated virtual
environments. These virtual environments allow the semi-realistic rendering of
arbitrary visual surroundings that make it easy to relate model simulations to ex-
perimental data gathered in various settings. Our platform facilitates structuring
of the graphical environment and of any social agents in the model. Typically, a
single developing infant and a single caregiver are modeled, but arbitrary phys-
ical and social settings are easily accommodated. To illustrate the features of
our platform, we show how it can be used to build an embodied model of the
emergence of gaze following in infant-caregiver interactions. This effort is a com-
ponent of a larger research project studying the emergence of shared attention
skills within the MESA (Modeling the Emergence of Shared Attention) project
at the University of California San Diego2.

The remainder of the chapter is organized as follows. Section 2 describes our
modeling platform and the underlying software infrastructure. Section 3 shows
how it is currently being used to build an embodied model of the emergence of
gaze following in mother-infant interactions. Finally, we discuss our work and
the relative benefits of virtual vs. robotic modeling approaches in Section 4.

2 The Platform

2.1 Platform Overview

The platform allows the construction of semi-realistic models of arbitrary visual
environments. A virtual room with furniture and objects can be set up easily to
model, say, a testing room used in a controlled developmental psychology exper-
iment, or a typical living room. These visual environments are populated with
virtual characters. The behavior and learning mechanisms of all characters can
be specified. Typically, a virtual character will have a vision system that receives
images from a virtual camera placed inside the character’s head. The simulated
vision system will process these images and the resulting representation will
drive the character’s behavior [15]. Figure 1 shows an example setting.

An overview of the software structure is given in Figure 2. The central core
of software, the “Simulation Environment,” is responsible for simulating the
learning agent (infant model) and its social and physical environment (caregiver
model, objects, . . . ). The Simulation Environment was programmed in C++
and will be described in more detail below. It interfaces with a number of 3rd
party libraries for animating human characters (BDI DI-Guy), managing and

2 http://mesa.ucsd.edu
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Fig. 1. Left: various views of a virtual living room used to model the emergence of gaze
following. From top left, clockwise: caregiver’s view, lateral view, birds eye view, and
infant’s view. Right: Saliency maps generated by analyzing the infant’s visual input
(lower left image in left half of figure). Top row, left to right: red, green, blue. Bottom
row, left to right: yellow, contrast, face position
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Fig. 2. Overview of software structure

rendering of the graphics (SGI OpenGL Performer), and visual processing of
rendered images to simulate the agents’ vision systems (OpenCV).

The platform currently runs on a Dell Dimension 4600 desktop computer with
a Pentium 4 processor running at 2.8GHz. The operating system is Linux. An
NVidia GeForce video graphics accelerator speeds up the graphical simulations.
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2.2 Third Party Software Libraries

OpenGL Performer. The Silicon Graphics OpenGL Performer3 toolkit is used
to create the graphical environment for running the experiments. OpenGL Per-
former is a programming interface built atop the industry standardOpenGL graph-
ics library . It can import textured 3D objects in many formats, including Open-
Flight (.flt extension) and 3D Studio Max (.3ds extension). OpenGL is a software
interface for graphics hardware that allows the production of high-quality color
images of 3D objects. It can be used to build geometric models, view them inter-
actively in 3D, and perform operations like texture mapping and depth cueing.
It can be used to manipulate lighting conditions, introduce fog, do motion blur,
perform specular lighting, and other visual manipulations. It also provides virtual
cameras that can be positioned at any location to view the simulated world.

DI-Guy. On top of OpenGL Performer, Boston Dynamics’s DI-Guy libraries4

provide lifelike human characters that can be created and readily inserted into
the virtual world. They can be controlled using simple high-level commands
such as “look at position (X,Y,Z),” or “reach for position (X,Y,Z) using the
left arm,” resulting in smooth and lifelike movements being generated automat-
ically. The facial expression of characters can be queried and modified. DI-Guy
provides access to the character’s coordinates and link positions such as arm and
leg segments, shoulders, hips, head, etc. More than 800 different functions for
manipulating and querying the characters are available in all. Male and female
characters of different ages are available, configurable with different appearances
such as clothing style.

OpenCV. Querying the position of a character’s head allows us to dynamically
position a virtual camera at the same location, thus accessing the character’s
point of view. The images coming from the camera can be processed using In-
tel’s OpenCV library5 of optimized visual processing routines. OpenCV is an
open-source, extendable software intended for real-time computer vision, and
is useful for object tracking, segmentation, and recognition, face and gesture
recognition, motion understanding, and mobile robotics. It provides routines for
image processing such as contour processing, line and ellipse fitting, convex hull
calculation, and calculation of various image statistics.

2.3 The Simulation Environment

The Simulation Environment comprises a number of classes to facilitate the
creation and running of simulations. Following is a description of the most im-
portant ones.

The Object Class. The Object class is used to create all inanimate objects
(walls, furniture, toys, etc.) in the simulation. Instances of the Object class are

3 http://www.sgi.com/products/software/performer/
4 http://www.bdi.com
5 http://www.intel.com/research/mrl/research/opencv/
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created by giving the name of the file containing the description of a 3D geomet-
rically modeled object, a name to be used as a handle, a boolean variable stating
whether the object should be allowed to move, and its initial scale. The file must be
of a format readable by OpenGL Performer, such as 3D Studio Max (.3ds files) or
OpenFlight (.flt files). When an Object is created, it is attached to the Performer
environment. There are methods for changing the position of the Object, for ro-
tating it, and changing its scale. Thus, it can easily be modeled that characters in
the simulation can grasp and manipulate objects, if this is desired.

The Object Manager Class. The Object Manager class holds an array of
instances of the Object class. The Object Manager has methods for adding
objects (which must be previously created) to the scene, removing them, and
querying their visibility from a specific location. The latter function allows to
assess if, e.g., an object is within the field of view of a character, or if the
character is looking directly at an object.

The Person Class. The Person class is used to add any characters to the
simulation. These may be rather complicated models of, say, a developing infant
simulating its visual perception and learning processes, or they may be rather
simplistic agents that behave according to simple scripts. To create an instance
of the Person class, a DI-Guy character type must be specified, which deter-
mines the visual appearance of the person, along with a handle to the OpenGL
Performer camera assigned to the character. The Brain type and Vision Sys-
tem type (see below) must be specified. If the character’s actions will result
from a script, then a filename with the script must be given. For example, such
a script may specify what the character is looking at any given time. One Brain
object and one Vision System object are created, according to the parameters
passed when creating the Person object. The Person object must be called
periodically using the “update” method. This causes the link corresponding to
the head of the character to be queried, and its coordinates to be passed to the
virtual camera associated with the character. The image from the virtual camera
in turn is passed to the character’s Vision System, if the character has any.
The output of the Vision System along with a handle to the DI-Guy character
is passed to the Brain object, which will decide the next action to take and
execute it in the DI-Guy character.

The Brain class. The Brain class specifies the actions to be taken by an in-
stance of the Person class. The space of allowable actions is determined by
the DI-Guy character type associated with the person. The simplest way of
how a Brain object can control the actions of a Person is by following a
script. In this case the Person will “play back” a pre-specified sequence of
actions like a tape recorder. More interestingly, a Brain object can contain
a simulation of the person’s nervous system (at various levels of abstraction).
The only constraint is that this simulation has to run in discrete time steps.
For example, the Brain object may instantiate a reinforcement learning agent
[14] whose state information is derived from a perceptual process (see below)
and whose action space is the space of allowable actions for this character.
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An “update” method is called every time step to do any perceptual process-
ing, generate new actions, and possibly simulate experience dependent learn-
ing.

The actions used to control a character are fairly high-level commands such
as “look to location (X,Y,Z),” “walk in direction Θ with speed v,” or “reach
for location (X,Y,Z) with the left arm,” compared to direct specification of
joint angles or torques. Thus, this simulation platform is not well suited for
studying the development of such motor behaviors. Our focus is on the develop-
ment of higher-level skills that use gaze shifts, reaches, etc. as building blocks.
Thus, it is assumed that elementary behaviors such as looking and reaching
have already developed and can be executed reliably in the age group of in-
fants being modeled — an assumption that of course needs to be verified for
the particular skills and ages under consideration. The positive aspect of this
is that it allows to focus efforts on modeling the development of higher level
cognitive processes without having to worry about such lower-level skills. This
is in sharp contrast to robotic models of infant development, where invariably
a significant portion of time is spent on implementing such lower level skills.
In fact, skills like two-legged walking and running, or reaching and grasping
are still full-blown research topics in their own right in the area of humanoid
robotics.

The Vision System class. The Vision System class specifies the processing
to be done on the raw image corresponding to the person’s point of view (as ex-
tracted from a virtual camera dynamically positioned inside the person’s head).
It is used to construct a representation of the visual scene that a Brain object
can use to generate behavior. Thus, it will typically contain various computer vi-
sion algorithms and/or some more specific models of visual processing in human
infants, depending on the primary goal of the model.

If desirable, the Vision System class may also use so-called “oracle vision”
to speed up the simulation. Since the simulation environment provides perfect
knowledge about the state of all objects and characters in the simulation, it
is sometimes neither necessary nor desirable to infer such knowledge from the
rendered images through computer vision techniques, which can be difficult and
time consuming. Instead, some property, say the identity of an object in the field
of view, can simply be looked up in the internal representations maintained by
the simulation environment — it functions as an oracle. This simplification is
desirable if the visual processing (in this case object recognition) is not central
to the developmental process under consideration, and if it can be assumed
that it is sufficiently well developed prior to the developmental process being
studied primarily. In contrast, in a robotic model of infant development, there
is no “oracle” available, which means that all perceptual processes required for
the cognitive skill under consideration have to be modeled explicitly. This is
time-consuming and difficult.

Main Program and Control Flow. The main program is written in C++
using object-oriented programming. OpenGL Performer is first initialized, and a
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scene with a light source is created and positioned. A window to display the 3D
world is initialized, and positioned on the screen. Virtual cameras are created and
positioned in the world, for example as a birds eye view or a lateral view. Cameras
corresponding to the characters are created but positioned dynamically as the
characters move their heads. Each camera’s field of view can be set (characters
would usually have around a 90o field of view), and can be configured to eliminate
objects that are too close or too far. All cameras created are linked to the window
that displays the 3D world. Environment settings such as fog, clouds, etc. can
be specified. The DI-Guy platform is then initialized, and a scenario is created.
The scenario holds information about all the characters, and must be used to
create new characters. New instances of the Person class are created, and their
activities are specified by periodically giving them new actions to perform. The
level of graphical detail of the characters can be specified to either get fairly
realistically looking characters or to speed up processing.

Statistics gathering. Throughout the session, statistics are gathered by query-
ing the different libraries: DI-Guy calls can be used to extract the position of the
different characters or the configuration of their joints. The Object Manager
can be used to query the position of objects and their visibility from the point of
view of the different characters. In addition, the internal states of all characters’
simulated nervous systems are perfectly known. This data or arbitrary subsets
of it can easily be recorded on a frame by frame basis for later analysis. These
statistics are useful for analyzing long-term runs, and allow to evaluate whether
the desired behavior is being achieved and at what rate. We point out that ev-
ery simulation is perfectly reproducible and can be re-run if additional statistics
need to be collected.

3 A First Example: Gaze Following

The motivation for constructing the platform was to facilitate the development
of embodied models of cognitive and social development. To illustrate how the
platform can be used through a concrete example, we will outline how we are
currently developing an embodied model of the emergence of gaze following [5].
Gaze following is the capacity to redirect visual attention to a target when it is
the object of someone else’s attention. Gaze following does not occur at birth,
but instead develops during a child’s first 18 months of life.

The model we are developing is aimed at testing and refining the basic set
hypothesis [8], which states that the following conditions are sufficient for gaze
following to develop in infants: a) a reward-driven general purpose learning mech-
anism, b) a structured environment where the caregiver often looks at objects or
events that the infant will find rewarding to look at, c) innate or early defined
preferences that result in the infant finding the caregiver’s face pleasant to look
at, and d) a habituation mechanism that causes visual reward to decay over
time while looking at an object and to be restored when attention is directed to
a different object. Recently, Carlson and Triesch [4] demonstrated with a very
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abstract and simplified computational model, how the basic set may lead to the
emergence of gaze following and how plausible alterations of model parameters
lead to deficits in gaze following reminiscent of developmental disorders such as
autism or Williams syndrome.

In our current work, we want to investigate if the basic set hypothesis still
holds for a more realistic situation, where learning takes place in a complex
naturalistic environment. The platform is configured for an experimental setup
consisting of a living room with furniture and a toy, all of them instantia-
tions of the Object class and built from 3D Studio Max objects. Two in-
stantiations of the Person class are created, one for the caregiver and one
for the baby. The caregiver and learning infant are placed facing each other.
The caregiver instantiates a Brain object controlling its behavior. A single toy
periodically changes location within a meter of the infant, and its position is
fed to the caregiver’s Brain. In a first version of the model, the caregiver’s
Brain will simply cause the character to look at the position of the interesting
toy with fairly high probability (75%). No visual system is given to the care-
giver.

The baby instantiates a Visual System object that models a simple infant
vision system. In particular, it evaluates the saliency of different portions of the
visual field [9], it recognizes the caregiver’s head, and it discriminates different
head poses of the caregiver. Saliency computation is based on six different fea-
tures, each habituating individually according to Stanley’s model of habituation
[13]. The feature maps (see Figure 1) are: red, green, blue and yellow color fea-
tures based on a color opponency scheme [12], a contrast feature that acts as
an edge detector by giving a high saliency to locations in the image where the
intensity gradient is high, and finally a face detector feature that assigns a high
saliency to the region of the caregiver’s face, which is localized through orace
vision. The saliency of the face can be varied depending on the pose of the care-
giver’s face with respect to the infant (infant sees frontal view vs. profile view of
the caregiver). A similar scheme for visual saliency computation has been used
by Breazeal [2] for a non-developing model of gaze following, using skin tone,
color, and motion features.

The infant’s Brain object consists of a two-agent reinforcement learning
system similar to that used in [4]. The first agent learns to decide when to
simply look at the point of highest saliency (reflexive gaze shift) or whether to
execute a planned gaze shift. The second agent learns to generate planned gaze
shifts based on the caregiver’s head pose. The infant should learn to direct gaze
to the caregiver to maximize visual reward, and habituation will cause him/her
to look elsewhere before looking back to the caregiver. With time, the infant
learns to follow the caregiver’s line of regard, which increases the infant’s chance
of seeing the interesting toy. However, the caregiver’s gaze does not directly index
the position of the object, but instead only specifies a direction with respect to
the caregiver but not the distance from the caregiver. One goal of the current
model is to better understand such spatial ambiguities and how infants learn to
overcome them [11].
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3.1 Platform Performance

To illustrate the performance of the platform given our current hardware, we
made a number of measurements to establish the computational bottlenecks for
this specific model. The time spent for each frame was divided into three sep-
arate measures for analysis: the time to calculate the feature maps (Vision),
the time to display them (Map Display), and the time for the DI-Guy environ-
ment to calculate the next character positions and display them (Animation).
Table 1 shows how the times vary with the resolution of the infant’s vision
system. As can be seen, most time is spent on simulating the infant’s visual
processing. Real time performance is achievable if the image resolution is not set
too high.

Table 1. Simulation times (sec.)

Image Scale Vision Map Display Animation

80×60 0.0226 0.0073 0.0476

160×120 0.0539 0.0092 0.0431

240×180 0.0980 0.0121 0.0522

320×240 0.1507 0.0113 0.0422

400×300 0.2257 0.0208 0.0507

480×360 0.3025 0.0276 0.0539

4 Discussion

The platform presented here is particularly useful for modeling the develop-
ment of embodied cognitive skills. In the case of the emergence of gaze following
discussed above, it is suitable because the skill is about the inference of men-
tal states from bodily configurations, such as head and eye position, which are
realistically simulated in our platform.

4.1 Virtual vs. Robotic Models

Recently, there has been a surge of interest in building robotic models of cog-
nitive development. Compared to the virtual modeling platform presented here,
there are a number of important advantages and serious disadvantages of robotic
models that we will discuss in the following. A summary of this discussion is given
in Table 2.

Physics. The virtual simulation is only an approximation of real-world physics.
The movements of the characters do not necessarily obey physical laws but are
merely animated to “look realistic.” For the inanimate objects, we currently do
not simulate any physics at all. In a robotic model, the physics are real, of course.
The justification of neglecting physics in the virtual model is that the cognitive
skills we are most interested in are fairly high-level skills, i.e., we simply do not
want to study behavior at the level of muscle activations, joint torques, and
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Table 2. Robotic vs. virtual models of infant cognitive development

Property Robotic Model Virtual Model

physics real simplified or ignored

agent body difficult to create much easier to simulate

motor control full motor control problem substantially simplified

visual environment realistic simplified computer graphics

visual processing full vision problem can be simplified through
oracle vision

social environment real humans real humans or simulated
agents

real time requirements yes no, simulation can be slowed
down or sped up

data collection difficult perfect knowledge of system
state

reproducibility of difficult perfect
experiments

ease-of-use very difficult easy

development costs extremely high very modest

frictional forces, but at the level of primitive actions such as gaze shifts, reaches,
etc., and their coordination into useful behaviors.

Agent body. In the virtual modeling platform, we can choose from a set of
existing bodies for the agents. These bodies have a high number of degrees of
freedom, comparable to that of the most advanced humanoid robots. Further,
since physics is not an issue, we are not restricted by current limitations in robotic
actuator technology. Our characters will readily run, crawl, and do many other
things.

Motor control. Our interface to the agents in the model allows us to specify
high-level commands (walk here, reach for that point, look at this object). The
underlying motor control problems do not have to be addressed. In contrast,
for a robotic model the full motor control problem needs to be solved, which
represents a major challenge. Clearly, the platform should not be used to study
the specifics of human motor control but it makes it much easier to focus on
higher level skills. At the same time, perfect control over individual joint angles
is possible, if desired.

Visual environment. The simulated computer graphics environment is of
course vastly simpler than images taken by a robot in a real environment. For
example, shadows and reflections are not rendered accurately, and the virtual
characters are only coarse approximations of human appearance. Clearly, again,
such a modeling platform should not be used to, say, study the specifics of hu-
man object recognition under lighting changes. The skills we are most interested
in, however, use object recognition as a basic building block (e.g., the ability to
distinguish different head poses of the caregiver with a certain accuracy). We
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believe that the details of the underlying mechanism are not crucial as long as
the level of competence is accurately captured by the model.

Visual processing. In the virtual modeling platform we can vastly simplify
perceptual processes through the use of oracle vision. In a robotic model, this
is not possible and the perceptual capabilities required for some higher level
cognitive skills may simply not have been achieved by contemporary computer
vision methods.

Social environment. A robotic model can interact with a real social environ-
ment, i.e., one composed of real human beings. In our virtual modeling platform
we could achieve this to some extent by using standard Virtual Reality interfaces
such as head mounted displays in conjunction with motion tracking devices. In
such a setup a real person would control a virtual person in the simulation, seeing
what the virtual person is seeing through the head mounted display. However,
the ability to experiment with vastly simplified agents as the social environment
allows us to systematically study what aspects of the social environment, i.e.,
which behaviors of caregivers, are really crucial for the development of specific
social skills [16]. This degree of control over the social environment cannot be
achieved with human subjects. Also, the social agents may be programmed to ex-
hibit behavior that replicates important statistics of caregiver behavior observed
in real infant caregiver interactions. For example, Deák et al. are collecting such
statistics from videos of infant-caregiver dyad interactions [6]. We are planning
on developing caregiver models that closely replicate the observed behaviors.

Real time requirements. A robotic model must be able to operate in real
time. This severely limits the complexity of the model. Perceptual processes in
particular are notoriously time consuming to simulate. In the virtual model, we
are not restricted to simulating in real time. Simulations may be slowed down
or sped up arbitrarily. In addition, the availability of oracle vision allows to save
precious computational resources.

Data collection. In the virtual model it is trivial to record data about every
smallest detail of the model at any time. This is much harder to achieve in a
robotic model interacting with real human caregivers. In particular, the exact
behavior of the caregiver is inherently difficult to capture. Useful information
about the caregiver behavior can be recovered by manually coding video records
of the experiment, but this information is not available at the time of the exper-
iment.

Reproducibility of experiments. Along similar lines, the virtual modeling
platform allows perfect reproducibility of experiments. Every last pixel of the
visual input to the learning agent can be recreated with fidelity. This is simply
impossible in a robotic model.

Ease-of-use. Not having to deal with robotic hardware shortens development
times, reduces maintenance efforts to a minimum, and makes it much easier to
exchange model components with other researchers. Also, recreating the specific
setup of a real-world behavioral experiment, only requires changing a config-
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uration file specifying where walls and objects are, rather than prompting a
renovation.

Development costs. Finally, robotic models are much more expensive. Most
of the software components used in our platform (Linux OS, SGI OpenGL Per-
former, Intel OpenCV) are freely available to researchers. The lion share of the
costs is the price of the BDI DI-Guy software.

All these benefits may make a virtual model the methodology of choice. Even
if a robotic model is ultimately desirable, a virtual model may be used for rapid
proto-typing. We see the use of virtual and robotic models as complementary.
In fact, we are pursuing both methodologies at the same time in our lab [10].

4.2 Possible Extensions

There are several extensions to our platform that may be worth pursuing. First,
we have only considered monocular vision. It is easy to incorporate binocular
vision by simply placing two virtual cameras side by side inside a character’s
head. Foveation could also be added to the characters’ vision systems. Second, in
order to model language acquisition, a simulation of vocal systems and auditory
systems of the characters could be added. Even in the context of non-verbal
communication, a caregiver turning his head to identify the source of a noise may
be a powerful training stimulus for the developing infant. Third, the platform is
not restricted to modeling human development, but could be extended to model,
say, the development of cognitive skills in a variety of non-human primates. To
this end the appropriate graphical characters and their atomic behaviors would
have to be designed. Fourth, on the technical side, it may be worth investigating
in how far the simulation could be parallelized to run on a cluster of computers.

5 Conclusion

In conclusion, we have proposed a research platform for creating embodied vir-
tual models of cognitive development. We have outlined how the platform may
be used to model the emergence of gaze following in naturalistic infant-caregiver
interactions. The virtual modeling platform has a number of important advan-
tages compared to robotic modeling approaches. The relative benefits of virtual
models over robotic models on the one hand or more abstract computational
models on the other hand need to be evaluated on a case-by-case basis.
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Abstract. In order to bootstrap shared communication systems, robots must have
a non-verbal way to influence the attention of one another. This chapter presents
an experiment in which a robot learns to interpret pointing gestures of another
robot. We show that simple feature-based neural learning techniques permit reli-
ably to discriminate between left and right pointing gestures. This is a first step
towards more complex attention coordination behaviour. We discuss the results
of this experiment in relation to possible developmental scenarios about how chil-
dren learn to interpret pointing gestures.

1 Introduction

Experiments with robots have successfully demonstrated that shared communication
systems could be negotiated between autonomous embodied agents [1, 2, 3, 4, 5, 6]. In
these experiments, robots draw attention through verbal means to an object of their
environment. In order to bootstrap these conventional communication systems, it is
crucial that the robots have a non-verbal way to influence the attention of other robots.
They can for instance point to the topic of the interaction. This non-verbal form of
communication is necessary as the robots have no direct access to the “meanings” used
by the other robots. They must guess it using non-linguistic cues. The interpretation
of pointing gestures must therefore be sufficiently reliable, at least initially when the
system is bootstrapping. Once the language is in place, such kind of external feedback
is less crucial and can even be absent [7].

Research in gaze or pointing interpretation is active in the context of human robot
interaction (e.g. [8, 9, 10, 11, 12, 13]). By contrast, only few works explore the same
issues for interaction between autonomous robots. A small number of solutions have
been proposed to enable pointing and pointing interpretation in a variety of contexts
(e.g. [14]). The focus of the present chapter concerns how robots can learn to interpret
pointing gestures.

This chapter presents a model in which pointing gesture recognition is learned us-
ing a reward-based system. This model assumes, for instance, that a robot will often
see something interesting from its point of view when looking in the direction where
another robot is pointing to. It can be a particular salient feature of the environment, or
an object which serves a current need (e.g. the charging station), or an opportunity for
learning [15]. This approach is in line with Carlson and Triesch’s computational model
of the emergence of gaze following based on reinforcement learning [16]. Their model
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has been tested in a virtual environment by Jasso et al. [17]. To the best of our knowl-
edge, this chapter represents the first attempt to show that a robot can learn to interpret
the pointing gestures of another robot.

The rest of the paper describes the robotic experiment we conducted. We then dis-
cuss the limitation and possible extensions of this preliminary investigation.

2 Robot Experiments

2.1 The Interaction Scenario

Here we describe and show robot experiments where a pointing gesture is learned to be
classified as either left or right. For these experiments, two Sony AIBOs were sitting
on the floor, facing each other (see figure 1). One of the robots (the adult) is randomly
pointing towards an object on the left or right side of its body using its left or right front
leg, respectively. The other robot (the child) is watching it. From looking at the pointing
gesture of the other robot, the learning robot guesses the direction and starts looking for
an object on this side. Finding the object on this side represents a reward.

Fig. 1. An example of pointing shown with two robots. The robot on the left represents the adult
who is pointing, the robot on the right represents the child who is learning to interpret the pointing
gesture

Since the focus of this experiment is learning of pointing recognition and not point-
ing, this skill is hardwired in the adult robot. The robot is visually tracking a coloured
object on its left or right side, thereby facing the object. Pointing is achieved by simply
copying the joint angle of the head to the joint angle of the arm. Note that the pointing
robot takes on an exact pointing position and does not only distinguish between the left
and the right side.

2.2 Image Processing and Feature Space

A sample camera image from the robot’s point of view can be seen in figure 2 left. For
the experiments, the robot took 2300 pictures focusing on its pointing partner, 1150 for
each pointing direction. The situations in which the pictures have been taken varied in
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the distance between the two robots, the viewing angle, the lighting conditions and the
backgrounds (three different backgrounds).

From the original camera image, a small number of features has to be selected to
facilitate the learning of interpreting the pointing gesture. We decided to apply two
main filters to the image. One filter extracts the brightness of the image, the other filter
extracts horizontal and vertical edges. These choices are biologically motivated. Eyes
are very sensitive to brightness levels, and edges are the independent components of
natural scenes [18]. The original image I is thus transformed to I ′ using a filter f :

I
f−→ I ′

For both filters, the colour image is transformed into greyscale first with pixel values
between 0 and 255. In the subsequent steps, the image is divided into its left part and
its right part (see figure 3). This is justified by the robot always centering on the other
robot’s face using an independent robot tracking mechanism, thus dividing the image
into the right half of the other robot and its left half.

I ′ −→ I ′L, I ′R

The brightness filter Bθ applies a threshold θ to the image, which sets all pixels with
a value greater than θ to 255, and all others to 0. For the experiments, values of θ = 120
and θ = 200 have been used. For the edge filter, we chose two Sobel filters SH and SV

(see [19]) which extracts the horizontal and the vertical edges, respectively. An example
of an image transformed by the filters can be seen in figure 2.

To the filtered images I ′, different operators op can be applied to extract low-
dimensional features. These operators are the centre of mass μ = (μx, μy) and the
sum Σ.

I ′
op−→ q

where q is the resulting scalar feature.
The four filters B120, B200, SH and SV together with the three operators μx, μy and

Σ applied to both the left and the right side of the image I result in 4 · 3 · 2 = 24

Fig. 2. Left: A robot pointing to its left side as seen from another robot’s camera. The child robot
tracks the adult robot in order to keep it in the centre of its visual field. Centre: Feature extraction
for brightness using a threshold θ. Right: Feature extraction for horizontal edges using a Sobel
edge detector
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Fig. 3. Feature extraction from the original camera image

different features qL and qR (see figure 3). We take the differences between the left and
right features resulting in 12 new features v = qL − qR.

2.3 Feature Selection

We selected a subset of the features by applying pruning methods. This is done by
evaluating a subset of attributes by considering the individual predictive ability of each
feature along with the degree of redundancy between them. Subsets of features that are
highly correlated with the class while having low intercorrelation are preferred. The
method used was greedy hillclimbing augmented with a backtracking facility provided
by WEKA [20]. From the 12 features available to the robot, 3 have been selected to
be the most meaningful: B200 ◦ μy , SH ◦ Σ and SV ◦ Σ. Their values for all images
are depicted in figure 4. Intuitively, the robot lifting its arm results in a vertical shift of
brightness on this side of the image, an increase of horizontal edges and a decrease of
vertical edges on this side.

For comparison, we also calculated the three least successful features. They turned
out to be B200 ◦ μx, B120 ◦ μx and SV ◦ μy .

Fig. 4. Most successful scalar features for pointing gesture recognition from an image and the
frequency of their values in the image data set. The red values are taken from pointing towards
the left, the blue ones from pointing towards the right. Left: B200 ◦ μy . Centre: SH ◦ Σ. Right:
SV ◦ Σ
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3 Results

For learning the pointing gesture recognition, we used a multi-layer-perceptron (MLP)
with the selected features as input, 3 neurons in the hidden layer, and the pointing
direction (left or right) coded with two neurons as output. The learning algorithm is
backpropagation with a learning rate λ = 0.3 and momentum m = 0.2. The evaluation
is based on a 10-fold cross validation.

We chose backpropagation as a supervised learning algorithm which is comparable
to a reward-based system in case of a binary decision. The choice of using MLPs and
backpropagation is arbitrary and can be replaced by any other suitable machine learn-
ing technique involving reward. It is however sufficient to show that pointing gesture
recognition can be easily learned between two robots.

Table 1. Learning results of different input features using 10-fold cross validation on the dataset
of 2300 images

features MLP success rate
best 3 3-3-2 95.96%

worst 3 3-3-2 50.74%
all 12 12-7-2 98.83%

The success rate for the three chosen features (figure 4) is 95.96% (see table 1) using
a 3-3-2 MLP and one epoch of training. When using all the 12 difference values v as
inputs to a 12-7-2 MLP, the success rate increases to 98.83%. The success rate for the
worst three features and one epoch of training is 50.74%, just slightly above chance.

In figure 5, the progress of learning can be monitored. The upper graph shows the
error curve when the images of the pointing robot are presented in their natural order,
alternating between left and right. The lower graph shows the error curve for images
presented in a random order from a pre-recorded sequence. The error decreases more
rapidly in the ordered sequence, but varies when conditions are changed.

4 Discussion

4.1 Pointing Interpretation and Intentional Understanding

We showed that with the current setup, a robot can learn to interpret another robot’s
pointing gesture. Although the pointing gesture of the adult robot can vary continuously
depending on the position of the object, the interpretation of the pointing direction is
either left or right. This corresponds to primary forms of attention detection as they can
be observed in child development. Mutual gaze between an adult and a child, a special
case of attentional behaviour, occurs first around the age of three months. At the age of
about six months, infants are able to discriminate between a left or right position of the
head and gaze of their parents, but the angle error can be as large as 60 degrees [21]. At
the age of about nine months, the gaze angle can be detected correctly. Pointing gestures
only start to be interpreted at the age of around one year [21] (see table 2). Children start
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Fig. 5. Error of MLP during learning. Top: sequence of images in natural order. Bottom: random
order of training images

to point first at the age of 9 months [22]. It is usually seen as a request for an object
which is outside the reach of the child, and even occurs when no other person is in the
room. This is called imperative pointing. At the age of 12 months, pointing behaviour
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Table 2. Developmental timelines of attention detection and pointing in humans

Age from: Attention detection Attention manipulation

0-3 m Mutual gaze - Eye contact detection
6 m Discrimination between left and right

position of head and gaze
9 m Gaze angle detection - fixation on the

first salient object encountered
Imperative Pointing: Drawing attention
as a request for reaching an object (atten-
tion not monitored)

12 m Gaze angle detection - fixation on any
salient object encountered - Accuracy in-
creased in the presence of a pointing ges-
ture

Declarative Pointing: Drawing attention
using gestures

18 m Gaze following toward object outside the
field of view - Full object permanence

becomes declarative and is also used to draw attention to something interesting in the
environment [23].

It is feasible to include the detection of a continuous angle of the pointing in a
robotic setup. This would involve changing the current binary decision to a continuous
value (possibly coded with population coding). But a higher accuracy is probably not
sufficient to achieve efficient pointing interpretation. To truly learn the exact meaning of
a pointing gesture, deeper issues are involved. Pointing interpretation in child develop-
ment starts at an age where the infant begins to construct an intentional understanding
of the behaviour of adults. This means that their actions are parsed as means towards
particular goals. It could therefore be argued that pointing interpretation is much more
than a geometrical analysis [23]. It involves a shared intentional relation to the world
[24]. Developing some form of intentional understanding in a robot is one of the most
challenging unsolved problems for developmental robotics [25].

4.2 Co-development of Pointing Gestures and Pointing Interpretation

In our robotic setup, the meaning of one gesture meaning ‘left’ and another gesture
meaning ‘right’ could easily be reversed, or even completely different gestures could
be used. The pointing movement of the adult robot was arbitrarily chosen to resem-
ble a human pointing gesture. It is not clear that this gesture is the most adapted for
unambiguous interpretations given the perceptual apparatus of the robots. In this per-
spective, it would be interesting to investigate a co-development between a pointing
robot and a robot trying to understand pointing gestures. Situations of co-development
between pointing and pointing gesture recognition could lead to interesting collective
dynamics. Given the embodiment of the robots and the environmental conditions, some
particular gestures may get selected for efficiency and learnability. Features that make
them unambiguous and easy to transmit will be kept, whereas inefficient traits should
be discarded. It has been argued that similar dynamics play a pivotal role for shaping
linguistic systems [26].
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4.3 Pointing and the Mirror Neuron System

Taking inspiration from current research in artificial mirror neuron systems [27], it
would be possible to design a robot that interprets pointing gestures of others in relation
with its own pointing ability. However, it is not clear whether the ability of pointing and
pointing detection are correlated in human child development. Desrochers, Morisette
and Ricard [28] observed that pointing seems to occur independently of pointing ges-
ture recognition during infant development. These findings also seem to suggest that
pointing does not simply arise from imitative behaviour.

4.4 Adult Robot Behaviour and Scaffolding

In the current setup, the adult robot randomly points at objects, its behaviour does not
depend on the behaviour or the reaction of the child robot. Interactions between humans
are very different. When pointing at something to show it to the child, a human adult
carefully observes the attentional focus of the child and adjusts its behaviour to it. In
some cases, the adult might even point to an object the child is already paying attention
to in order to strengthen the relationship [29].

4.5 Pointing and Cross-Correlation

Nagai et al. [12] have argued in the context of human-robot interaction that simply the
correlation between the presence of objects in general and gaze is sufficient for learning
how to interpret gaze (without the necessity of an explicit feedback). Similar techniques
based on cross-correlation could also be tried in the context of pointing interpretation
between two robots. This type of learning relies on the assumption that the correlation is
sufficiently strong to be discovered in practice. It is possible that a combination of both
cross-correlation and reward based processes results in an efficient strategy for learning
of pointing interpretation.

5 Conclusions

The interpretation of pointing is only one of the prerequisites necessary for bootstrap-
ping human-like communication between autonomous robots. This chapter presents a
first experiment showing how a robot can learn to interpret pointing gestures of another
robot. In our future work, we will address the limitations of this initial prototype that
have been discussed, and investigate the dynamics of social coordination and attention
manipulation not yet investigated in this work.
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Abstract. Function approximators are commonly in use for reinforce-
ment learning systems to cover the untrained situations, when dealing
with large problems. By doing so however, theoretical proves on the con-
vergence criteria are still lacking, and practical researches have both pos-
itive and negative results. In a recent work [3] with neural networks, the
authors reported that the final results did not reach the quality of a Q-
table in which no approximation ability was used. In this paper, we con-
tinue this research with grid based function approximators. In addition,
we consider the required number of state transitions and apply ideas from
the field of active learning to reduce this number. We expect the learning
process of a similar problem in a real world system to be significantly
shorter because state transitions, which represent an object’s actual
movements, require much more time than basic computational processes.

1 Introduction

On Reinforcement Learning (RL) problems [13] in which it is impracticable to
investigate all states and actions of interest explicitly, function approximators
such as neural networks (NNs) are commonly used [10]. In fact, the NN is a pop-
ular tool in various domains of machine learning. However, convergence criteria
for RL algorithms are not guaranteed when approximators are in use [1], and
in practice poor results may possibly arise [2]. A main drawback of NNs is the
interference problem [15] which means that new learning samples in one area of
the state space may cause unlearning in another area. The obvious development
of a RL process is to learn the reinforcement values near the goal first, before
continuing with states further away. Therefore, the following training input may
affect the already learned states in a negative way. This leads to a cleavage
in the use of such approximators, while other methods can still be useful [12].
In this paper, we use grid based function approximators to investigate another
possibility to approach RL solutions more deeply.

In addition, we apply methods derived from the principles of active learning
[4, 9, 11] to approach the problem. Active learning becomes more and more popu-
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lar, and there are already several results on this topic. The most common aspect
of active learning is active data acquisition where problem-specific algorithms
are designed to optimize the retrieval of costly learning data [5, 16]. Acquisition
of learning data does not require a significant amount of time in a simulation,
but this aspect becomes important when dealing with real world systems where
robots, for example, are used. In this case, other computations of the learning
algorithm are usually performed essentially faster. Several studies demonstrate
the capability of active learning in the field of supervised learning. For RL tasks
however, active learning applications are still scarce and also problematic, since
the possibilities of actively picked training samples from the state space are still
be to investigated for the RL environment [6]. In this paper, we want to make a
step towards the possibilities of active learning in the field of RL. The algorithm
and its general idea are described in section 2. Then, section 3 shows experimen-
tal results of the ”Mountain-Car” task. The conclusions are presented in section
4 and offer starting points for further work.

2 Q-Learning with Grid Based Function Approximators

The experiments in this paper are oriented towards the work done by Car-
reras, Ridao, and El-Fakdi [3], and use Q-learning [14] methods as well. Where
they relied on NNs, however, we use piecewise linear grid based approximators
(PLGBAs) which store and retrieve data exactly at certain given grid points, and
approximates linearly in between. This section describes the approximators we
used, as well as our learning algorithm which applies PLGBAs on RL problems.

2.1 Piecewise Linear Grid Based Approximators

In the following we describe piecewise linear grid based approximators (PLGBA)
used in the experiments of this paper. This kind of function approximator assumes
a d-dimensional grid and a triangulation into simplices given. In figure 1 we see an
example of a two-dimensional grid with a Kuhn triangulation. The representable
functions are linear on the simplices and continuous on the simplex boundaries.
They can be described as a linear combination of generalised hat functions.

Fig. 1. Support of a hat function on a two-dimensional grid with Kuhn triangulation
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In the example in figure 1 the support of a two-dimensional hat function is
shaded. The black dot is the top of the hat function, where it attains the value 1.
At the boundaries of the support the hat function vanishes, and on each simplex
it is linear. These conditions uniquely define the hat function centred on the black
dot. The set of all hat functions {ϕ1, . . . , ϕF } corresponding to the F grid nodes
is a basis of the space of representable functions, i.e. f(x) =

∑F
i=1 ϕi(x) wi. The

wi are the adjustable parameters of the function approximator. They can be in-
terpreted as the height of the different hat functions. The feature ϕi(x), which is
equivalent to the value of the i-th hat function at point x, determines the weight
that is given to grid node i. The vector ϕ(x) = (ϕ1(x), . . . , ϕF (x))� contains the
barycentric coordinates of x. It satisfies 0 ≤ ϕi(x) ≤ 1 and

∑F
i=1 ϕi(x) = 1.

PLGBAs are a generalization of piecewise constant grid based approximators
(PCGBAs). In PCGBAs one usually uses constant indicator functions of the
Voronoi cell around each grid point as basis functions. In PLGBAs this indicator
function is replaced by a generalized piecewise linear and continuous hat function,
whichmakesthewholeapproximatorcontinuous,which isnotthecase forPCGBAs.

2.2 The Learning Algorithm

Our algorithm consists of two parts: The first part handles the acquisition of
learning samples, and the second part performs the actual learning. These two
parts form an episode of the learning process and are repeated during the learn-
ing. The following lines of code show the schema of the algorithm.

Schema of the learning algorithm

while true
/* a new episode begins here */
choose_new_starting_state;

/* Part 1: data acquisition */
while goal_not_reached and transition_limit_not_reached

choose_next_greedy_action;
perform_state_transition;
determine_grid_point_belonging_to_last_state_transition;
determine_database_learning_sample_belonging_to_grid_point;
if last_state_transition is_closer_to grid_point

than database_learning_sample
replace_database_learning_sample_with_last_state_transition;

end;
end;

/* Part 2: learning */
for each learning_sample in database

perform_Q_learning_update;
end;

end;
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Learning samples are created on trajectories, which refer to sequences of
state transitions (the system’s transition from state st to a following state st+1

by performing action at). A trajectory ends when the goal or a given limit of
state transitions is reached. After that, a new episode can be run, beginning
from a new independently chosen starting state. The execution phase of a state
transition on a certain trajectory is also referred as a cycle.

Fig. 2. An exemplary part of the database. Specific learning samples are selected from
the trajectories by the algorithm for each episode, shown as black dots. The gray samples
have been replaced during the learning process. For each grid point, the closest sample
is preferred. The arrows indicate to which grid point the particular sample correspond

For the acquisition of training data, a state transition (st, at, st+1) is pro-
cessed in each cycle of the k-th episode by evaluating the Q-values Qk−1(st, at)
currently stored in the approximator. The current values determine the next
action with a greedy policy. While a trajectory is being performed, each state
transition may be inserted into a database of learning samples, replacing an
already present sample if necessary. The database is organized as a grid, and
each state is associated with the nearest particular grid point. Learning samples
which belong to the same grid point compete against each other to remain in the
database. The preference is given to those samples which have a smaller distance
to their corresponding grid points. Figure 2 illustrates this method. The learning
samples are stored separately for each possible action a ∈ {−1, 0, 1}. Since our
algorithm is designed for a deterministic problem, only one learning sample is
stored for each pair of state and action. For a non-deterministic problem, the
database could be extended to store multiple entries per pair of state and action.

The selection and substitution of learning samples ensure an upper limit for the
total number of samples in the database, although new state transition are consid-
ered in each episode. The choice is made with regards to two aspects. First, this
method leads to a set of learning samples evenly distributed over the state space.
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Redundant training data is kept at a minimum by this means. The second reason
is explained by the nature of the PLGBA. In [8] it was shown that grid based ap-
proaches to reinforcement learning problems may lead to divergence. In contrast,
the authors also showed the existence of ”safe points” for state transitions at which
thePLGBAcanbe updatedwithout the risk of divergence.The grid points are such
safe points, so we favor samples near the grid points in our algorithm.

The actual learning is done by evaluating the learning samples from the
database. According to the standard Q-learning update, new target values

Qk(st, at) = α [R(st, at)+ γ min
at+1

Qk−1(st+1, at+1)]+ (1−α) Qk−1(st, at) (1)

are computed. The learning part can be executed in parallel with the acquisition
of training data, and therefore does not pose an additional delay to the costly
data acquisition.

2.3 Additional Aspects of the Algorithm

Reflecting on the results, we concluded that the problem was simplified funda-
mentally by allowing the learning algorithm to access any state in the state space
directly. Especially, in regards to the ”Mountain-Car” task – which served as a
benchmark in the next section – new trajectories were allowed to begin anywhere
in the state space, as it was proposed in the referenced paper [3]. A state in the
”Mountain-Car” thereby consists of a position p and a velocity v. With this pos-
sibility at hand however, the entire problem could be solved a lot easier. In this
case, only a few learning samples of state transitions were required in an offline
learning process to solve the problem. Well distributed learning samples across
the state space and the approximation ability of the PLGBA are able to represent
the whole state space in good quality, as the results in section 3 demonstrate.

Further experiments were therefore subjected to the restriction that new
trajectories had to start with zero car velocity (v = 0). States with non-zero
velocity had to be explored by running episodes based on repeated car movement.
This restriction was added in regards to practical RL tasks. It is to be expected
that direct access to any state will not be possible in general.

In a second step, the database of learning samples also serves for decisions
about where new training trajectories will begin next. Each grid point (corre-
sponding to zero starting velocity, since only these grid points are valid as new
starting positions) has a counter, and for each state transition, the counter of
the corresponding grid point is increased. New trajectories start near grid points
whose neighbourhoods were visited least. This decision is orientated towards the
key idea of active learning to spend more effort in those areas where detailed
knowledge about the state space is still lacking.

3 Experimental Results

To validate our results, we used a benchmark called the ”Mountain-Car” problem
– a common benchmark to evaluate the quality of RL algorithms. The behaviour
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of the system is detailed in [7]. Please note that there exist various variants of
the ”Mountain-Car” task, and most of them specify the task with the car placed
specifically into the middle of the valley [7, 12], while our paper wants to cover
all starting states in general according to the SONQL paper [3]. Comparisons in
general are therefore difficult.

For the results in this section, the quality criterion of the experiments was
the averaged number of cycles required for a trajectory to reach the goal. The
number of cycles was measured on an evaluation set with 1000 independently
and randomly chosen starting states which remained fixed for all experiments in
this section. An experiment was considered finished when the quality criterion
was stable. This number of cycles on average was then seen as the final quality of
the learning process. A stable quality means that the averaged number of cycles
stayed fixed (with a tolerance of 0.05) for the following 106 Q-table updates. New
to [3], the total number of state transitions performed to reach the final quality
was calculated as our main performance criterion. This criterion is important in
real world systems where movement of objects such as robots occur, in contrast
to simulation only. Computation times for updates to the approximator, for
example, are then negligible.

In the next subsection, the performance baseline presented in the SONQL
paper [3] is reproduced. Standard Q-learning is used with a PCGBA to show
that the evaluation set of their work is comparable to ours. Experiments with
various PLGBAs in the following subsection then demonstrate the approxima-
tion capability of PLGBAs. The learning restriction of zero starting velocity is
introduced in the third subsection and is also valid for the last one. The actual
application of our learning algorithm and its results are presented in the final
subsection.

3.1 The Original Performance Baseline

In our first experiment, we used the standard Q-learning algorithm to get a
performance baseline. This baseline was also presented in [3]. The state space was
discretized into 181 and 141 points for position and velocity, respectively. Since
there are three actions available in each state, a corresponding PCGBA, with
181·141·3 = 76563 grid points, was used as an approximator. With the parameter
configuration given in the SONQL paper, the performance baseline of 50 cycles
per trajectory on average could be confirmed. In our experiment however, 2.13 ·
107 learning cycles (which correspond to 250000 episodes approximately) instead
of 1 ·107 learning cycles were necessary. Since we were not interested in analysing
the standard Q-learning algorithm, we accepted this result. Note that for the
standard on-policy Q-learning algorithm, the number of cycles are equal to the
number of performed state transitions, our main performance criterion.

3.2 Experiments with PLGBAs

Further experiments used PLGBAs to store and retrieve the Q-values. In order
to motivate our approaches towards actively chosen learning samples, the next
experiments demonstrate the capability of the PLGBA to learn the given task
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Table 1. Results of different PLGBA dimensions

PLGBA number of cycles per trajectory number of updates
dimensions learning samples on average iterations to Q-table

181 · 141 · 3 76563 49.8 21 1607823
91 · 71 · 3 19383 50.5 15 290745
37 · 29 · 3 3219 51.3 15 48285
19 · 15 · 3 855 53.0 11 9405

The learning samples are placed on the grid points and thus are evenly distributed
across the state space. The final learning quality is given by the averaged number of
cycles per trajectory, measured on the evaluation set. The number of iterations denotes
how many times the entire set of learning samples has been updated.

in an offline learning process. The state space was discretized as before, but this
time a single learning sample (st, at, st+1) was drawn at every grid point. The
offline learning process consisted of updating the PLGBA’s values repeatedly
according to (1). No additional training samples were used during the learning
phase, so the set of learning samples remained fixed for every experiment in this
subsection. The schema of the algorithm in this subsection is summarized in the
following lines of code.

Schema of the algorithm in this subsection

/* Part 1: data acquisition */
for each grid_point in PLGBA
create_learning_sample_at_grid_point;

end;

/* Part 2: learning */
while true
/* a new iteration begins here */
for each learning_sample in database

perform_Q_learning_update;
end;

end;

The first grid had 181·141·3 = 76563 grid points, and the final result was 49.8
cycles per trajectory on average, measured on the same evaluation set as for the
PCGBA. Additional PLGBAs further showed the efficiency of this proceeding,
whereby smaller grids got slightly worse results as shown in Table 1. Increasing
the grid density did not further reduce the average trajectory length.

Please keep in mind that according to the discussion from section 2, these re-
sults were for analytical use only since training samples placed on the grid points
meant that the starting velocity of the car could be chosen freely. Therefore, the
next step was to apply the knowledge from this subsection to learning based on
actual car movement.
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3.3 Adding a Realistic Learning Restriction

With regards to the discussion about the starting velocity v = 0 from section
2, the standard Q-learning was used again to give a new performance baseline.
Both a PCGBA and a PLGBA were tested hereby, and the dimensions were
corresponding to each other resulting in 181 · 141 · 3 grid points. While using a
PCGBA, 15.0 · 106 state transitions and 162000 episodes were executed to reach
the final result of 50.8 cycles per trajectory on average. Please note that the
number of cycles has increased in these experiments. The reason is that some
states are not accessible anymore due to the restriction of the starting velocity,
so the state space has changed. The Q-learning algorithm itself did not perform
worse in these experiments.

6.5 ·106 state transitions in 75500 episodes were necessary for the same result
of 50.8 cycles per trajectory on average while using the PLGBA. This shows
that the use of a linear approximation can surpass the learning performance of
the PCGBA while retaining the learning quality at the same time. The learn-
ing process still required much time however, and further learning methods are
expected to improve the performance beyond these results.

3.4 Actively Chosen Learning Samples

This subsection applies the learning algorithm from section 2 onto the ”Mountain-
Car” task. The following experiments were done with a database storing the
learning samples, and the selection of state transitions near the grid points was
applied, as it has been detailed in before. In the end, the same averaged num-
ber of 50.8 cycles per trajectory was reached, showing the same learning quality
as the standard Q-learning algorithm. However, while the standard algorithm
needed a big amount of state transitions, our learning algorithm could reduce
this number by performing only 470000 state transitions approximately. The
number of episodes could be reduced as well since only 5200 episodes on average
were necessary for these results.

The final step includes the selection of starting positions for new learning
episodes, while other aspects of the learning algorithm remained the same. Fig-
ure 3 shows the learning progression of both methods in comparison with the
standard Q-learning algorithm. With actively chosen starting states, the number
of required state transitions to achieve the final result of 50.8 cycles per trajec-
tory could be reduced further on to 427000, and 4720 episodes were run during
this learning process. Since our algorithm updated the Q-table at all learning
samples in the database in every episode, it performed much more of these up-
dates than the standard Q-learning. We regard this drawback as negligible for
learning processes with real world systems, because an object’s movements usu-
ally require several dimensions more of time than updates to the approximator.
Table 2 summarizes the results of the different methods.

The learning progressions, however, reveal that the selection of starting states
did not improve the learning process in general. In fact, as long as the state space
is not completely explored yet, randomly chosen starting states perform equally
well, since the visited states during the learning process mainly depend on the
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Fig. 3. Learning progressions of the different methods in comparison

inaccuracy of the incompletely learned Q-values. Specifically chosen starting
position quicken the search for the final results not before the optimal quality is
approached.

Table 2. Results of the different learning methods with learning on trajectories

learning number of cycles per trajectory number of updates
method state transitions on average episodes to Q-table

1 15.0 · 106 50.8 162000 15.0 · 106

2 6.5 · 106 50.8 75500 6.5 · 106

3 470000 50.8 5200 51.0 · 106

4 427000 50.8 4720 46.3 · 106

Method 1: Standard Q-learning with a PCGBA. Method 2: Standard Q-learning with
a PLGBA. Method 3: Selection of learning samples near grid points of a PLGBA.
Method 4: Third method with additional selection of starting states.

4 Conclusions

In this paper, we showed that it is possible to use piecewise linear grid based
approximators to attain the quality of an approximator with constant approxi-
mation, and moreover reduce the required effort during the learning process at
the same time. This approach led to the application of our learning algorithm
based on the ideas of active learning which was also able to improve the learning
performance on the given task. The algorithm and its underlying idea have been
detailed and tested on the well-known ”Mountain-Car” task. Specifically, this
was demonstrated by reducing the amount of required state transitions during
the learning process, a criterion which plays the essential role when working
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with real world systems. Future work will apply this technique to Reinforce-
ment Learning problems in real world systems and bigger state spaces to further
demonstrate the usefulness of active learning in the Reinforcement Learning
domain.
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Abstract. A biologically inspired computational model of rodent repre-
sentation–based (locale) navigation is presented. The model combines vi-
sual input in the form of realistic two dimensional grey-scale images and
odometer signals to drive the firing of simulated place and head direc-
tion cells via Hebbian synapses. The space representation is built incre-
mentally and on-line without any prior information about the environ-
ment and consists of a large population of location-sensitive units (place
cells) with overlapping receptive fields. Goal navigation is performed us-
ing reinforcement learning in continuous state and action spaces, where
the state space is represented by population activity of the place cells.
The model is able to reproduce a number of behavioral and neuro-
physiological data on rodents. Performance of the model was tested on
both simulated and real mobile Khepera robots in a set of behavioral
tasks and is comparable to the performance of animals in similar tasks.

1 Introduction

The task of self-localization and navigation to desired target locations is of cru-
cial importance for both animals and autonomous robots. While robots often
use specific sensors (e.g. distance meters or compasses), or some kind of prior
information about the environment in order to develop knowledge about their
location (see [1] for review), animals and humans can quickly localize themselves
using incomplete information about the environment coming from their senses
and without any prior knowledge. Discovery of location and direction sensitive
cells in the rat’s brain (see Sect. 2) gave some insight into the problem of how this
self-localization process might happen in animals. It appears that using exter-
nal input and self-motion information various neural structures develop activity
profiles that correlate with current gaze direction and current location of the
animal. Experimental evidence suggests that in many cases activity of the place
and direction sensitive neurons underlies behavioral decisions, although some
results are controversial (see [2], Part II for review).
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The first question that we try to answer in this work is what type of sensory
information processing could cause an emergence of such a location and direc-
tion sensitivity. Particular constraints on the possible mechanism that we focus
on are (i) the absence of any prior information about the environment, (ii) the
requirement of on-line learning from interactions with the environment and (iii)
possibility to deploy and test the model in a real setup. We propose a neural ar-
chitecture in which visual and self-motion inputs are used to achieve location and
direction coding in artificial place and direction sensitive neurons. During agent-
environment interactions correlations between visually– and self-motion–driven
cells are discovered by means of unsupervised Hebbian learning. Such a learning
process results in a robust space representation consisting of a large number of
localized overlapping place fields in accordance with neuro-physiological data.

The second question is related to the use of such a representation for goal
oriented behavior. A navigational task consists of finding relationships between
any location in the environment and a hidden goal location identified by a re-
ward signal received at that location in the past. These relationships can then be
used to drive goal–oriented locomotor actions which represent the navigational
behavior. The reinforcement learning paradigm [3] proposed a suitable frame-
work for solving such a task. In the terms of reinforcement learning the states
of the navigating system are represented by locations encoded in the population
activity of the place sensitive units whereas possible actions are represented by
population activity of locomotor action units. The relationships between the lo-
cation and the goal are given by a state-action value function that is stored in the
connections between the place and action units and learned online during a goal
search phase. During a goal navigation phase at each location an action with the
highest state-action value is performed resulting in movements towards the goal
location. The application of the reinforcement learning paradigm is biologically
justified by the existence of neurons whose activity is related to the difference
between predicted and actual reward (see Sect. 2) which is at the heart of the
reinforcement learning paradigm.

The text below is organized as follows. The next section describes neuro-
physiological and behavioral experimental data that serve as a biological mo-
tivation for our model. Section 3 reviews previous efforts in modeling spatial
behavior and presents a bio-inspired model of spatial representation and navi-
gation. Section 4 describes properties of the model and its performance in navi-
gational tasks. A short discussion in Sect. 5 concludes the paper.

2 Biological Background

Experimental findings suggest that neural activity in several areas of the rat’s
brain can be related to the self-localization and navigational abilities of the an-
imals. Cells in the hippocampus of freely moving rats termed place cells tend to
fire only when the rat is in a particular portion of the testing environment, inde-
pendently of gaze direction [4]. Different place cells are active in different parts of
the environment and activity of the population of such cells encode the current
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location of the rat in an allocentric frame of reference [5]. Other cells found in
the hippocampal formation [6], as well as in other parts of the brain, called head
direction cells, are active only when the rat’s head is oriented towards a specific
direction independently of the location (see [2], Chap. 9 for review). Different
head direction cells have different preferred orientations and the population of
such cells acts as an internal neural compass. Place cells and head-direction cells
interact with each other and form a neural circuit for spatial representation [7].

The hippocampal formation receives inputs from many cortical associative
areas and can therefore operate with highly processed information from differ-
ent sensory modalities, but it appears that visual information tends to exert a
dominant influence on the activity of the cells compared to other sensory inputs.
For instance, rotation of salient visual stimuli in the periphery of a rat’s envi-
ronment causes a corresponding rotation in place [8] and head direction [6] cell
representations. On the other hand, both place and head direction cells continue
their location or direction specific firing even in the absence of visual landmarks
(e.g. in the dark). This can be explained by taking into account integration over
time of vestibular and self-movement information (that is present even in the
absence of visual input), which is usually referred to as the ability to perform
’path integration’. There is an extensive experimental evidence for such ’integra-
tion’ abilities of place and head direction cell populations (reviewed in [9] and
[2], Chap. 9, respectively).

One of the existing hypotheses of how the place cells can be used for nav-
igation employs a reinforcement learning paradigm in order to associate place
information with goal information. In the reinforcement learning theory [3] a
state space (e.g. location-specific firing) is associated with an action space (e.g.
goal-oriented movements) via a state-action value function, where the value is
represented by an expected future reward. This state-action value function can
be learned on-line based on the information about a current location and a dif-
ference between the predicted and an actual reward. It was found that activity
of dopaminergic neurons in the ventral tegmental area (VTA) of the brain (a
part of the basal ganglia) is related to the errors in reward prediction [10, 11].
Furthermore these neurons project to the brain area called nucleus accumbens
(NA) which has the hippocampus as the main input structure and is related to
motor actions [12, 13, 14, 15]. In other words neurons in the NA receive spatial
information from the hippocampus and reward prediction error information from
the VTA. As mentioned before, these two types of information are the necessary
prerequisites for reinforcement learning. This data supports the hypothesis that
the neural substrate for goal learning could be the synapses between the hip-
pocampus and NA. The NA further projects to the thalamus which is in turn
interconnected with the primary motor cortex, thus providing a possibility that
the goal information could be used to control actions. The model of navigation
described in this paper is consistent with these experimental findings.

On the behavioral level, several experimental paradigms can be used to test
navigational abilities of animals in the tasks in which an internal space represen-
tation is necessary for the navigation (so called locale navigation, see [16] for a
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review of navigational strategies). Probably the most frequently used paradigm
is the hidden platform water maze [17]. The experimental setup consists of a
circular water pool filled with an opaque liquid and a small platform located
inside the pool, but submerged below the surface of the liquid. At the beginning
of each trial a rat is placed into the pool at a random location and its task is to
find the platform. Since no single visual cue directly identifies the platform and
the starting locations are random, animals have to remember the location of the
hidden platform based on the extra-pool visual features. After several trials rats
are able to swim directly to the hidden platform from any location in the pool,
which indicates that they have acquired some type of spatial representation and
use it to locate the platform.

Extensive lesion studies show that damage to brain areas containing place or
direction sensitive cells, as well as lesions of the fornix (nerve fibers containing
projections from the hippocampus to the NA) or the NA itself selectively impair
navigational abilities of rats in tasks where an internal representation of space
is necessary [16, 15, 18].

This and other experimental data suggest that the hippocampal formation can
serve as the neural basis for spatial representation underlying navigational behav-
ior. This hypothesized strong relation between behavior and neuro-physio-logical
activity can be elaborated by means of computational models, that can in turn
generate predictions testable on the level of both neurophysiology and behavior.

3 Modeling Spatial Behavior

The ability of animals to navigate in complex task-environment contexts has
been the subject of a large body of research over the last decades. Because of
its prominent role in memory and its spatial representation properties described
above the hippocampus has been studied and modeled intensively. In the next
section we review several models of the mechanisms yielding place cell activity
and its role in locale navigation. In Sect. 3.2 we describe our own model in detail.

3.1 Previous Models

In this section we focus on those models which were tested in navigational tasks
in real environments using mobile robots. Readers interested in theoretical and
simulation models as well as in models of different types of navigation are referred
to reviews of Trullier et al. [19] and Franz and Mallot [1].

Recce and Harris [20] modeled the hippocampus as an auto-associative mem-
ory which stored a scene representation consisting of the bearings and distances
of the surrounding landmarks and of a goal location. The landmark bearings
and distances were extracted from omnidirectional sonar scans. During a first
exploration phase the scenes were stored in the memory and each stored scene
was associated with a place cell. During a second goal navigation phase the cur-
rently perceived scene was compared to the scenes stored in the memory. When
the scenes matched, the stored scene was activated (i.e. the place cell fired)
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together with the goal location information. Once the scene was recalled, the
robot moved directly to the goal. Information about the landmark positions and
orientations were updated using integrated odometer signals, but the place cell
activity depended only on the visual input.

Burgess et al. [21, 22] described a robotic implementation of an earlier neuro-
physiological model of the rat hippocampus [23]. Some place cells were shown
to fire at a relatively fixed distance from the walls of a testing environment [24].
This property inspired the place recognition mechanism of the robot of Burgess
et al. which visually estimated distances to the surrounding walls by detecting
the position of a horizontal line at the junction of the walls and the floor in the
input image. During a first exploration phase, the robot rotated on the spot at
all locations of the arena to face all walls and to estimate their distances. The
robot’s orientation with respect to a reference direction was derived from path
integration which was periodically reset by using a dedicated visual marker. A
competitive learning mechanism selected a number of place cells to represent the
specific wall distances for each place. In a second goal search phase, once the goal
was found the robot associated four goal cells with the place cells representing
four locations from which the direction towards the goal was known. During goal
navigation, the goal direction could be computed from the relative activity of all
goal cells using population vector technique [25].

In the model by Gaussier et al. [26, 27, 28], at each time step during ex-
ploration, a visual processing module extracted landmark information from a
panoramic visual image. For each detected landmark in turn its type (e.g. verti-
cal line in the image) and its compass bearing (their robot had a built-in magnetic
compass) were merged into a single ”what” (landmark type) and ”where” (land-
mark bearing) matrix. When a place cell was recruited the active units from the
”what-where” matrix were connected to it. The activity of the place cells was
calculated in two steps: first, the initial activation of a place cell was determined
as a product of the recognition level of a given feature and its bearing. Second, a
winner-take-all mechanism reset the activities of all but the winning cell to zero.
A delay in activation of the place cells between successive time steps allowed the
next layer to learn place transitions: an active cell from the previous time step
and an active cell from the current time step were connected to a transition cell
using Hebbian learning rule. This way when a place cell was active (i.e. a place
was recognized), it activated the associated transition cells thus ”predicting” all
possible (i.e. experienced in the past) transitions from that place. A transition
selection mechanism was trained in the goal search phase: after the goal was
found, the transition cells leading to the goal were activated more than others.
This goal-oriented bias in the competition among possible transitions allowed
the agent to find the goal.

The model of Arleo et al. [29, 30, 31] is an earlier version of the model pre-
sented in the next section. In this model position and direction information
extracted from the visual input were combined with information extracted from
the self-motion signals and merged into a single space representation which was
then used for goal navigation. The visual processing pathway transformed a
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two-dimensional camera image into a filter-based representation by sampling it
with a set of orientation-sensitive filters. At each time step during an exploration
phase, the agent took four snapshots, one in each cardinal direction. For each ori-
entation, the filter activities were stored in a so called view cell. A downstream
population of visual place cells combined the information from all simultane-
ously active view cells using a Hebbian learning rule. In the parallel self-motion
processing pathway an estimation of position was performed by integrating sig-
nals from odometers. The self-motion position estimation was calibrated using
the visual position estimation. Similarly, the direction estimation was performed
by integrating rotations, but calibrated using a dedicated landmark (a lamp).
The self-motion and visual estimations of position were then combined in ”hip-
pocampal” place cells population using Hebbian learning. The authors proposed
a locale navigation system using reinforcement learning where the population of
the hippocampal place cells served as a state space. Each place cell projected to
four action cells, that coded for a movement in directions north, south, east and
west respectively. The projection weights stored an approximated state-action
value function and were modified using a reward-based learning method during a
goal search phase. During navigation the action cells population vector encoded
the direction of movement to the goal from any location in the environment.

3.2 A Model of Space Representation and Navigation

The computational model of the rat spatial behavior presented in this paper is an
extension of the previous model by Arleo et al. (Sect. 3.1) and is able to learn a
representation of the environment by exploration. Starting with no prior knowl-
edge, the system grows incrementally based on agent–environment interaction.
Information about locations visited for the first time is stored in a population
of place cells. This information is subsequently used for self-localization and
navigation to desired targets.

In the neural model of place cells, allothetic (visual) information is correlated
with idiothetic information (rotation and displacement signals from the robot’s
odometers) using Hebbian learning. This yields a stable space representation
where ambiguities in the visual input are resolved by the use of the idiothetic
information, and a cumulative error of path integration is accounted for by using
unbiased visual input.

Figure 1 presents a functional diagram of the model. Visual stimuli are en-
coded in the population of View Cells (VCs), which project to the population
of Allothetic Place Cells (APCs) where a vision-based position estimation is ac-
quired and to the population of Allothetic Heading Cells (AHCs) where current
gaze direction is estimated from the visual input. The transformation of the vi-
sual input to the vision-based representation is a part of the allothetic pathway
leading to the population of Hippocampal Place Cells (HPCs). In the second,
idiothetic, pathway, displacement and rotation signals from the odometers are
integrated over time to build an internal estimation of position in the Path Inte-
gration Cells (PIC) and gaze direction in the Heading Integration Cells (HIC).
The path and heading integration systems allow the rat to navigate in darkness
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Fig. 1. Functional diagram of the model. Dashed lines denote neural transformation of
a sensory input, solid lines denote projections between populations. See explanations
in the text

or in the absence of visual cues. Both allothetic (APC) and idiothetic (PIC) pop-
ulations project onto the HPC population where the final space representation
is constructed in the form of location sensitive cells with overlapping receptive
fields. Once the space representation has been learned, it can be used for nav-
igational tasks. A direction of movement to the goal from any location in the
environment is learned in the Action Cells population using temporal-difference
learning technique.

The model is tested in navigational tasks using a computer simulation as well
as a real Khepera robot which we refer to as ’agent’ in the text below. We now
discuss our model in detail.

Idiothetic Input. The idiothetic input in the model consists of rotation and
displacement signals from the agent’s odometers. In order to track current gaze
direction we employ a population of 360 Heading Integration Cells (HIC), where
each cell is assigned a preferred heading ψi ∈ [0◦, 359◦]. If φ̂ is the estimate of a
current gaze direction, the activity of cell i from the HIC population is given by

rHIC
ψi

= exp(−(ψi − φ̂)2/2σ2
HIC) , (1)

enforcing a Gaussian activity profile around φ̂, where σHIC defines the width of
the profile. A more biologically plausible implementation of the neural network
with similar properties can be realized by introducing lateral connections be-
tween the cells where each cell is positively connected to the cells with similar
preferred directions and negatively connected the other cells. The attractor dy-
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namics of such an implementation accounts for several properties of real head
direction cells [32]. Here we employ the simpler algorithmic approach (1) that
preserves network properties relevant for our model. When the agent enters a
new environment arbitrary direction ψ0 is taken as a reference direction. When-
ever the agent performs a rotation, the rotational signal from the odometers is
used to shift the activity blob of the HIC population. Here again a simple al-
gorithmic approach is used where the new direction is explicitly calculated by
integrating wheel rotations and a Gaussian profile is enforced around it, although
more biologically plausible solutions exist [33, 34].

Having a current gaze direction encoded by the HIC population, standard
trigonometric formulas can be used to calculate a new position with respect to
the old position in an external Cartesian coordinate frame whenever the agent
performs a linear displacement. We define Path Integration Cells (PIC) popula-
tion as a two–dimensional grid of cells with predefined metric relationships, each
having its preferred position pi = (xi, yi) and activity

rPIC
i = exp(−(pi − p̂)2/2σ2

PIC) , (2)

where p̂ = (x̂, ŷ) is the estimate of position based on idiothetic information only.
Origin p0 = (0, 0) is set at the entry point whenever the agent enters a new
environment. The PIC population exhibits a two-dimensional Gaussian profile
with width σPIC around the current position estimation.

While the agent moves through an environment the activities of HICs (1)
and PICs (2) encode estimates of its position and heading with respect to the
origin and the reference direction based only on the idiothetic input. They enable
the agent to navigate in darkness or return to the nest location in the absence
of visual cues, properties that are well known in animals [35]. The estimation
of direction and position will drift over time due to accumulating errors in the
odometers. Another problem is that the abstract Cartesian frame is mapped onto
the physical space in a way that depends on the entry point. Both problems are
addressed by combining the idiothetic input with a visual (allothetic) input and
merging the two information streams into a single allocentric map.

Allothetic Input. The task of the allothetic pathway is to extract position
and heading information from the external (visual) input. Based on the visually
driven representation the agent should be able to recognize previously visited
locations from a current local view1. Such a localization property can be im-
plemented by comparing a current local view to all previously seen local views
and using some similarity measure to recognize visited places (with a natural
assumption that similar local views signal for spatially close locations). This
comparison of the local views should take into account information about cur-
rent heading that can be estimated from the relative angles between the current
and all stored local views where the relative angles can in turn be computed
from the amount of overlap between the local view representations.

1 The term ”local view” is used to denote information extracted from the visual input
at a given time step.
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Fig. 2. Visual input and heading estimation. a: Two-dimensional panoramic image is
processed by a grid of S×R points with 8 Gabor filters of different orientations at each
point (filters are shown as overlapping circles, different orientations are shown only in
the lower-left circle). Responses of the filters are stored in a View Cell. b: Current
heading φ̂ can be estimated from the maximal overlap Ci between the current and a
stored local views corresponding to the angular difference Δφi (3,5)

The raw visual input in the model is a two-dimensional grey-level image, re-
ceived by merging several snapshots captured by the video camera of the robot
into a single panoramic (320◦ − 340◦) picture imitating the rat’s wide view field.
Note that the individual directions and the number of the snapshots are not im-
portant as long as the final image is of the required angular width (the model would
perfectly suit for a single panoramic image as an input). In order to neurally rep-
resent visual input the image is sampled with a uniform rectangular grid of S×R
points (see Fig. 2(a), for the results presented here we used S = 96 columns and
R = 12 rows). At each point of the grid we place a set of 8 two-dimensional Gabor
filters with 8 different orientations and a spatial wavelength matched to the res-
olution of the sampling grid. Gabor filters are sensitive to edge-like structures in
the image and have been largely used to model orientation-sensitive simple cells
in the visual cortex [36]. Responses Fk of K = S × R × 8 = 9216 visual filters
constitute the local view information L(φ,p) = {Fk(φ,p)}K

1 that depends on the
heading direction φ and the position p where the local view was taken.

Local views perceived by the agent are stored in the population of View Cells
(VCs). At each time step a new VC i is recruited that stores the amplitudes of
all current filter responses L(φi,pi). As the agent explores an environment the
population of View Cells grows incrementally memorizing all local views seen so
far. The place is considered to be well memorized if there is sufficient number of
highly active View Cells. The information stored by the VC population can be
used at each time step to estimate current heading and position as follows.

Allothetic Heading Estimation. In order to estimate current heading based on
the visual input we employ a population of 360 Allothetic Heading Cells (AHC)
with preferred directions uniformly distributed in [0◦, 359◦]. Suppose that a local
view Li(φi,pi) taken at position pi in direction φi is stored by a View Cell i at
time step t and the agent perceives a new local view L̂(φ̂, p̂) at a later time step
t′, where φ̂ and p̂ are unknown (the local view information is time independent).
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This is schematically shown in Fig. 2(b), where the arcs illustrate panoramic im-
ages (that elicit filter responses constituting the local views) with arrows showing
corresponding gaze directions. In order to estimate the current heading φ̂ based
on the stored local view Li we first calculate the angular difference Δφi

(mea-
sured in columns of the filter grid) between L̂ and Li that maximizes the sum of
products Ci of corresponding filter values (i.e. gives maximum of the correlation
function)

Δφi
= max

Δφ

Ci(Δφ) , (3)

Ci(Δφ) =
∑

s

f i(s) · f̂(s + Δφ) . (4)

Here f i(s) and f̂(s) are the sets of all filter responses in vertical column s of
the stored Li and current L̂ local views respectively, s runs over columns of the
filter grid s ∈ [0, S − 1].

The estimation of the current heading φ̂ performed using information stored
by a single View Cell i is now given by

φ̂ = φi + δφi
, where (5)

δφi
= Δφi

· V/S (6)

is the angular difference measured in degrees corresponding to the angular dif-
ference measured in filter columns Δφi

, V is the agent’s view field in degrees.
Let us transform the algorithmic procedure (3)-(5) into a neuronal imple-

mentation. Ci(Δφ) is calculated as a sum of scalar products and can hence be
regarded as the output of a linear neuron with synaptic weights given by the ele-
ments of fi applied to a shifted version of the input f̂ . We now assume that this
neuron is connected to an allothetic head direction cell with preferred direction
ψj = φi + δφ and the firing rate

rAHC
ψj

= Ci(Δφ) , (7)

taking into account (6). The maximally active AHC would then code for the
estimation φ̂ of the current heading based on the information stored in VC i.

Since we have a population of View Cells (incrementally growing as the en-
vironment exploration proceeds) we can combine the estimates of all View Cells
in order to get a more reliable estimate. Taking into account the whole VC
population the activity of a single AHC will be

rAHC
ψj

=
∑

i∈V C

Ci(Δφ) , (8)

where for each AHC we sum correlations Ci(Δφ) with Δφ chosen such that
φi + δφ = ψj . The activations (8) result in the activity profile in the AHC
population. The decoding of the estimated value is done by taking a preferred
direction of the maximally active cell.
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Allothetic Position Estimation. As mentioned before, the idea behind the allo-
thetic position estimation is that similar local views should signal for spatially
close locations. A natural way to compare the local views is to calculate their
difference

ΔL̃(φi,pi, φ̂, p̂) =
∣∣∣Li(φi,pi) − L̂(φ̂, p̂)

∣∣∣ =
∑

s

∣∣∣f i(s) − f̂(s)
∣∣∣
1

, (9)

where f i(s) and f̂(s) are defined as in (4).
While exploring an environment the agent makes random movements and

turns in the azimuthal plane, hence stored local views correspond to different al-
locentric directions. For the difference (9) to be small for spatially close locations
the local views must be aligned before measuring the difference. It means that
(9) should be changed to take into account the angular difference δφi

= φ̂ − φi

where φ̂ is provided by the AHC population:

ΔL(φi,pi, φ̂, p̂) =
∑

s

∣∣∣f i(s) − f̂(s + Δφi
)
∣∣∣
1

. (10)

In (10) Δφi
is the angular difference δφi

measured in columns of the filter grid
(i.e. a whole number closest to δφi

· S/V ).
We set the activity of a VC to be a similarity measure between the local

views:

rVC
i = exp

(
−ΔL2(φi,pi, φ̂, p̂)

2σ2
VCNΩ

)
, (11)

where NΩ is the size of the overlap between the local views measured in filter
columns and σVC is the sensitivity of the View Cell (the bigger σVC the larger
is the receptive field of the cell). Each VC ”votes” with its activity for the
estimation of the current position. The activity is highest when a current local
view is identical to the local view stored by the VC, meaning by our assumption
that p̂ ≈ pi.

Each VC estimates current position based only on a single local view. In
order to combine information from several local views, all simultaneously active
VCs are connected to an Allothetic Place Cell (APC). Unsupervised Hebbian
learning is applied to the connection weights between VC and APC populations.
Specifically, connection weights from VC j to APC i are updated according to

Δwij = η rAPC
i (rVC

j − wij) , (12)

where η is a learning rate. Activity of an APC i is calculated as a weighted
average of the activity of its afferent signals.

rAPC
i =

∑
j rVC

j wij∑
j wij

. (13)

The APC population grows incrementally at each time step. Hebbian learning
in the synapses between APCs and VCs extracts correlations between the View
Cells so as to achieve a more reliable position estimate in the APC population.
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Combined Place Code. The two different representations of space driven by
visual and proprioceptive inputs are located in the APC and PIC populations
respectively. At each time step the activity of PICs (2) encode current position
estimation based on the odometer signals, whereas the activity of APCs (13)
encode the position estimation based on local view information.

Since the position information from the two sources represent the same phys-
ical position we can construct a more reliable combined representation by using
Hebbian learning.

At each time step a new Hippocampal Place Cell (HPC) is recruited and
connected to all simultaneously active APCs and PICs. These connections are
modified by Hebbian learning rule analogous to (12). The activity of an HPC
cells is a weighed average of its APC and PIC inputs analogous to (13).

For visualization purposes the position represented by the ensemble of HPCs
can be interpreted by population vector decoding [37]:

p̂HPC =

∑
j rHPC

j pHPC
j∑

j rHPC
j

, (14)

where pHPC
j is the center of the place field of an HPC j.

Such a combined activity at the level of HPC population allows the system
to rely on the visual information during the self-localization process at the same
time resolving consistency problems inherent in a purely idiothetic system.

Goal Navigation Using Reinforcement Learning. In order to use the po-
sition estimation encoded by the HPC population for navigation, we employ
a Q-learning algorithm in continuous state and action space [38, 39, 40, 3]. Val-
ues of the HPC population vector (14) represent a continuous state space. The
HPC population projects to the population of NAC Action Cells (AC) that code
for the agent’s motor commands. Each AC i represents a particular direction
θi ∈ [0◦, 359◦] in an allocentric coordinate frame. The continuous angle θAC

encoded by the AC population vector

θAC = arctan
( ∑

i rAC
i · sin(2πi/NAC)∑

i rAC
i · cos(2πi/NAC)

)
(15)

determines the direction of the next movement in the allocentric frame of ref-
erence. The activity rAC

i = Q(p̂HPC, ai) =
∑

j wa
ijr

HPC
j of an Action Cell i

represents a state-action value Q(p̂HPC, ai) of performing action ai (i.e. move-
ment in direction θi) if the current state is defined by p̂HPC. The state-action
value is parameterized by the weights wa

ij of the connections between HPCs and
ACs.

The state-action value function in the connection values wa
ij is learned ac-

cording to the Q-learning algorithm using the following procedure [38]:

1. At each time step t the state-action values are computed for each action
Q(p̂HPC(t), ai) = rAC

i (t).
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2. Action a = a∗ (i.e. movement in the direction θAC defined by (15)) is chosen
with probability 1−ε (exploitation) or a random action a = ar (i.e. movement
in a random direction) is chosen with probability ε (exploration).

3. A Gaussian profile around the chosen action a is enforced in the action cells
population activity resulting in r̃AC

i = exp(−(θ − θi)/2σ2
AC), where θ and θi

are the directions of movement coded by the actions a and ai respectively.
This step is necessary for generalization purposes and can also be performed
by adding lateral connectivity between the action cells [38].

4. The eligibility trace is updated according to
eij(t) = α · eij(t− 1) + r̃AC

i (t) · rPC
j (t) with α ∈ [0, 1] being the decay rate of

the eligibility trace.
5. Action a is executed (along with time step update t = t + 1).
6. Reward prediction error is calculated as

δ(t) = R(t) + γ · Q(p̂HPC(t), a∗(t)) − Q(p̂HPC(t − 1), a(t − 1)) ,
where R(t) is a reward received at step t.

7. Connection weights between HPC and AC populations are updated accord-
ing to Δwa

ij(t) = η · δ(t) · eij(t − 1) with η ∈ [0, 1] being the learning rate.

Such an algorithm enables fast learning of the optimal movements from any
state, in other words given the location encoded by the HPC population it learns
the direction of movement towards the goal from that location. The generaliza-
tion ability of the algorithm permits calculation of the optimal movement from
a location even if that location was not visited during learning. Due to the usage
of population vectors the system has continuous state and action spaces allowing
the model to use continua of possible locations and movement directions using
a finite number of place or action cells.

4 Experimental Results

In this section we are interested in the abilities of the model to (i) build a
representation of a novel environment and (ii) use the representation to learn and
subsequently find a goal location. The rationale behind this distinction relates
to the so called latent learning (i.e. ability of animals to establish a spatial
representation even in the absence of explicit rewards [41]). It is shown that
having a target–independent space representation (like the HPC place fields)
enables the agent to learn target–oriented navigation very quickly.

For the experiments discussed in the next sections we used a simulated as
well as a real Kephera robots. In the simulated version the odometer signals
and visual input are generated by a computer. The simulated odometers error
is taken to be 10% of the distance moved (or angle rotated) at each time step.
Simulated visual input is generated by a panoramic camera placed into a virtual
environment.
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4.1 Development and Accuracy of the Place Field Representation

To test the ability of the model to build a representation of space we place the
robot in a novel environment (square box 100 cm.×100 cm.) and let it move in
random directions incrementally building a spatial map.

Figure 3(a) shows an example of the robot’s trajectory at the beginning of
the exploration (after 44 time steps). During this period 44 HPCs were recruited
as shown in Fig. 3(b). The cells are shown in a topological arrangement for
visualization purposes only (the cells that code for close positions are not neces-
sarily neighbors in their physical storage). After the environment is sufficiently
explored (e.g. as in Fig. 3(d) after 1000 time steps), the HPC population encodes
estimation of a real robot’s position (Fig. 3(c)).

(a) (b)

(c) (d)

Fig. 3. Exploration of the environment and development of place cells. The grey square
is the test environment. a: Exploratory trajectory of the robot after 44 time steps. Light
grey circle with three dots is the robot, black line is its trajectory. The white line shows
its gaze direction. b: HPCs recruited during 44 steps of exploration shown in (a). Small
circles are the place cells (the darker the cell the higher its activity). c: The robot is
located in the SW quadrant of the square arena heading west, white arc shows its view
field (340◦). d: Population activity of the HPC population after exploration while the
robot’s real location is shown in (c). The white cross in (b) and (d) denotes the position
of the HPC population vector (14)
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(a) (b)

(c) (d)

Fig. 4. a,b: Position estimation error in a single trial in X (a) and Y (b) directions
with (light conditions) and without (dark conditions) taking into account the visual
input. c,d: Position estimation error SD over 50 trials in X (c) and Y (d) directions in
the light and dark conditions

To investigate self-localization accuracy in a familiar environment we let the
robot run for 140 steps in the previously explored environment and note the
error of position estimation (i.e. difference between the real position and a value
of the HPC population vector (14)) at each time step in the directions defined
by the walls of the box.

Figures 4(a),(b) show the error in vertical (Y) and horizontal (X) directions
versus time steps (’light’ conditions, solid line) in a single trial. For comparison
we also plot the position estimation error in the same trials computed only by
integrating the idiothetic input, i.e. without taking into account visual input
(’dark’ conditions, line with circles). A purely idiothetic estimate is affected by
a cumulative drift over time. Taking into account visual information keeps the
position error bounded.

Figure 4(c),(d) show the standard deviation (SD) of the position estimation
error in light and dark conditions over 50 trials in X and Y directions (the mean
error over 50 trials is approximately zero for both conditions). The error SD in
light conditions is about 12 cm (that corresponds to 12% of the length of the
wall).
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(a) (b) (c)

Fig. 5. a. Receptive field of a typical APC. b. Receptive field of a typical HPC. c.
Receptive field of the same cell as in (b) but in dark conditions

In order to inspect the receptive fields of the place cells we let the robot
systematically visit 100 locations distributed uniformly over the box area and
noted the activity of a cell at each step. Contour graphs in Fig. 5(a),(b) show
the activity maps for an APC and a HPC respectively. APCs tend to have large
receptive fields, whereas HPC receptive fields are more compact. Each HPC
combines simultaneously active PICs and APCs (see Sect. 1) allowing it to code
for place even in the absence of visual stimulation, e.g. in the dark (Fig. 5(c)).
This is consistent with experimental data where they found that the place fields
of hippocampal place are still present in the absence of visual input [42].

4.2 Goal Directed Navigation

A standard experimental paradigm for navigational tasks that require internal
representation of space is the hidden platform water maze [17]. In this task the
robot has to learn how to reach a hidden goal location from any position in the
environment.

The task consists of several trials. In the beginning of each trial the robot
is placed at a random location in the test environment (already familiar to the
robot) and is allowed to find a goal location. The position of the robot at each
time step is encoded by the HPC population. During movements the connection
weights between HPC and AC populations are changed according to the algo-
rithm outlined in Sect. 1. The robot is positively rewarded each time it reaches
the goal and negatively rewarded for a wall hit. The measure of performance in
each trial is the number of time steps required to reach the goal (that corresponds
to the amount of time required for a rat to reach the hidden platform).

After a number of trials the AC population vector (15) encodes learned di-
rection of movement to the goal from any location p̂HPC. A navigation map after
20 trials is shown in Fig. 6(a). The vector field representation of Fig. 6(a) was
obtained by rastering uniformly over the whole environment: the ensemble re-
sponses of the action cells were recorded at 100 locations distributed over 10×10
grid of points. At each point (black dots in Fig. 6(a)) the population vector (15)
was calculated and is shown as a black line where the orientation of the line
corresponds to φAC and the length corresponds to the action value Q(p̂HPC, a∗).
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(a)
(b)

Fig. 6. a: Navigation map learned after 20 trials, dark grey circle denotes the goal lo-
cation, black points denote sample locations, lines denote a learned direction of move-
ment. b: Time to find a goal versus the number of trials

As the number of learning trials increase, the number of time steps to reach
the goal decreases (Fig. 6(b)) in accordance with the experimental data with
real animals [43].

5 Conclusion

The work presents a bio-inspired model of a representation–based navigation
which incrementally builds a space representation from interactions with the
environment and subsequently uses it to find hidden goal locations.

This model is different from the models mentioned in Sect. 3.1 in several
important aspects. First, it uses realistic two–dimensional visual input which
is neurally represented as a set of responses of orientation–sensitive filter dis-
tributed uniformly over the artificial retina (the visual system is similar to the
one used by Arleo et al. [31], but in contrast it is not foveal in accordance with
the data about the rat’s visual system [44]). Second, the direction information
is available in the model from the combination of visual and self-motion input,
no specific compass or dedicated orientational landmark are used. Third, as in
the model by Arleo et al. the integration of the idiothetic information (i.e. path
integration) is an integrative part of the system that permits navigation in the
dark and supports place and head direction cells firing in the absence of visual
input.

The model captures some aspects of related biological systems on both be-
havioral (goal navigation) and neuronal (place cells) levels. In experimental neu-
roscience the issue of relating neuro-physiological properties of neurons to behav-
ior is an important task. It is one of the advantages of modeling that potential
connections between neuronal activity and behavior can be explored systemati-
cally. The fact that neuro-mimetic robots are simpler and more experimentally
transparent than biological organisms makes them a useful tool to check new
hypotheses and make predictions concerning the underlying mechanisms of spa-
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tial behavior in animals. On the other hand, a bio-inspired approach in robotics
may help to discover new ways of building powerful and adaptive robots.
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Abstract. To have agents autonomously model a complex environment, it is 
desirable to use distributed representations that lend themselves to neural 
learning. Yet developing and executing plans acting on the environment calls 
for abstract, localist representations of events, objects and categories. To 
combine these requirements, a formalism that can express neural networks, 
action sequences and symbolic abstractions with the same means may be 
considered advantageous. We are currently exploring the use of compositional 
hierarchies that we treat both as Knowledge Based Artificial Neural Networks 
and as localist representations for plans and control structures. These 
hierarchies are implemented using MicroPsi node nets and used in the control 
of agents situated in a complex simulated environment. 

1   Introduction 

Plan based control of agents typically requires the localist representation of objects 
and events within the agent’s world model: to formulate a plan, individual steps have 
to be identified, arranged into sequences and evaluated. The ordering of the plan 
components asks for some kind of pointer structure that is usually expressed as a 
symbolic formalism. On the other hand, to have an agent act in a complex dynamic 
environment with properties and structure unknown to the agent, it is often desirable 
to use sub-symbolic representations of the environment that lend themselves to 
autonomous reinforcement learning. These demands result in hybrid architectures [11, 
5], which combine symbolic and sub-symbolic layers of description. Usually, these 
layers are implemented with different techniques, for instance by defining a number 
of learnable low-level behaviors implemented in neural networks, which are switched 
and parameterized by a symbolic, non-neural layer. 

In our approach, we make use of a different setting: we are using a kind of 
executable semantic network, called MicroPsi node nets [2] that can act both as feed-
forward networks suitable for back-propagation learning and as symbolic plan 
representations. Even the control structures of our agents are implemented within the 
same networks as are their plans and their representations of the environment. This 
has a number of advantages: it is not necessary, for example, to draw a sharp 
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boundary between categorical abstractions and sensory-motor behavior. Rather, we 
express rules and abstractions as instances of localist neural network structures that 
may even be used to facilitate neural learning. We may thus mix distributed 
representations at all descriptional levels with rules, and we can also use rules at the 
lowest sensory-motor levels, if this is appropriate for a given task. 

2   MicroPsi Agents 

We are currently developing a cognitive architecture that is called MicroPsi [1] and 
focuses on the autonomous acquisition of grounded representations by agents, based 
on motivation. MicroPsi is partially derived from ideas of the “Psi”-theory of 
psychologist Dietrich Dörner [6, 7, 8]. Here, agents do not possess predefined 
knowledge of the world, but a set of predefined modes of access to it (i.e. sensors and 
actuators and some low-level processing for sensor data). Additionally, MicroPsi 
agents have a fixed set of motivational parameters (urges), which measure demands 
(like food or uncertainty reduction). In the pursuit of the demands, the agents’ action 
control establishes consumptive goals (which consist in fulfilling of these demands) 
and directs the agents’ behavior.  

While some of the urges allude to physical needs (like food, water and integrity), 
there are also urges that are directed on cognitive aspects (like competence, i.e. the 
effectiveness in attaining goals, and uncertainty reduction, which measures the degree  

 

Fig. 1. Agent architecture as suggested by Dörner 2002 [8] 
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of exploration of accessible environmental features). Dörner also suggests a social 
urge, called affiliation, which is directed at receiving positive socially interpreted 
signals from other agents. Each urge may give rise to a respective active motive, 
where the motive strength depends on the deviation of the demand from its target 
value, and the chance of selecting it is proportional to both the estimate of reaching a 
related goal and the intensity of the urge. Initially, the agents do not know which 
operations on the environment are effective in addressing the demands, so they have 
to resort to a try-and-error strategy. If actions have an effect (positive or negative) on 
the demands, a connection between the action, the surrounding perceived situation 
and the demand is established. If the respective urge signal gives rise to the related 
motive later on, it will pre-activate the associated situation and action context in the 
agent’s memory. Thus, the urges may govern the behavior of the agent, based on its 
previous experiences. 

Perception, action control, memory retrieval and planning may furthermore be 
modified by a set of modulating parameters: the selection threshold determines 
motive stability, the resolution level controls the accuracy and speed of perception 
and planning by affecting the number of features that are tested, the activation 
controls the action readiness and is basically inverse to the resolution level, and the 
securing level affects the ratio of orientation behavior. Together with the current urge 
changes (which are interpreted as pleasure or displeasure signals) and the competence 

 

Fig. 2. Influences of modulators in the Dörner model 
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and uncertainty levels, the state of the modulators might be interpreted as an 
emotional configuration of the agent. 

2.1   MicroPsi Node Nets: Executable Spreading Activation Networks 

Internally, MicroPsi agents are made up of a spreading activation node net. This 
section gives a (somewhat simplified) description: 

 net, , , , , fNN U V DataSources DataTargets Act=  (1) 
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Its building blocks, the net-entities U, are connected via weighted, directional links V. 
Net entities possess slots I (this is where links sum up their transmitted activation) and 
gates O, which take activation values from the slots and calculate output activations 
with respect to gate specific activators Act. Activators allow controlling the 
directional spread of activation throughout: there is an activator gateTypeact Act  for 

each gate type, and since the node output function (6) is usually computed as 
( )( )min max , ,

ogateTypeout act amp min max= , only gates with non-zero activators 

may propagate activation. Vectors of DataSources and DataTargets connect the net to 
its environment. The net entities come in several flavors: 

• Register nodes have a single gate of type “gen” and a single slot, also of type 
“gen”; they are often used as simple threshold elements. 

• Sensor nodes and actuator nodes provide the connection to the environment. Their 
activation values are received from and sent to the agent world (which can be a 
simulation or a robotic environment). Sensor nodes do not need slots and have a 
single gate of type “gen”, which takes its value from a DataSource. Actuator nodes 
transmit the input activation they receive through their single slot (also type “gen”) 
to a DataTarget. At the same time, they act as sensors and receive a value from a 
DataSource that usually corresponds with the actuator’s DataTarget: The technical 
layer of the agent framework sends the respective DataTarget value to the agent’s 
world-server which maps it to an operation on the world and sends back a success 
or failure message, which in turn is mapped onto the actuator’s DataSource. 

• Concept nodes are like register nodes; they have a single incoming slot, but in 
addition several kinds of outgoing links (i.e. types of gates). Each kind of links can 
be turned on or off to allow for directional spreading activation throughout the 
network, using the corresponding activator. Concept nodes allow the construction 
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of partonomic hierarchies: the vertical direction is made of by the link type “sub”, 
which encodes a part-whole relationship of two nodes, and the link type “sur”, 
which encodes the reciprocal relationship. Horizontally, concept nodes may be 
connected with “por” links, which may encode a cause-effect relationship, or 
simply an ordering of nodes. The opposite of “por” links are “ret” links. 
Additionally, there are link types for encoding categories (“cat” and “exp”) and 
labeling (“sym” and “ref”). (Note that link type translates into a link originating 
from a gate of the respective type.) 

• Activator and associator nodes are special entities that can be used to manage link 
weights, control directional spreading of activation and the values of activation of 
individual or groups of nodes in the network. 
It is possible to write arbitrary control structures for agents using these node types.  

We have implemented a graphical editor/simulator to do this. However, we found 
that the manual design and debugging of large control programs using individual 
linked nodes is practically not feasible (trying to do this literally gives the notion of 
spaghetti code a new meaning). If a structure within the agent is not meant to be 
accessed as a collection of nodes, it is more straightforward to implement it using a 
programming language such as Java. This purpose is served by 

• Native modules – this are net entities encapsulating arbitrary functions fnode acting 
on the net, implemented in a native programming language, and executed 
whenever the module receives activation. 

• Node spaces are net entities that encapsulate a collection of nodes: 

 

Fig. 3. MicroPsi node net editor 
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 { }net, , , fS S S SS U DataSources DataTargets=  (8) 

Activator and associator nodes act only within the level of their node spaces. 
Because node spaces can contain other node spaces, agents may be split into 
modules, which make their innards a lot more accessible to human readers. 

A slightly more detailed description of MicroPsi node nets is given in [2].  

2.2   Situatedness of the Agents 

Most of our experiments take place in a simulated environment that provides 
necessary resources and some hazards to the agents. Objects within the environment 
appear as co-located collections of features to the agents, where features correspond 
to sensory modalities of the agents. The simulation world is a plane consisting of 
different terrain types (the terrain has an effect on locomotion and may also provide a 
hazard, i.e. certain areas may cause damage to the agent). Different modes of 
locomotion are available to the agents, such as simple grid-based movement or a 
simulation of a pair of stepper motor driven wheels.  

In the past, we have presented agents with identifiers for each object, along with  
a spatial position relative to the agent. Currently, we start using abstract basic 
modalities,  such  as  Gestalt  identifiers,  spatial  extensions,  relative  positions, color  

 

Fig. 4. World editor/simulator 
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values and weights, which might be replaced by a more low-level interface (like 
bitmaps and surface textures) in the future. Besides sensing, agents may probe their 
environment by acting upon it and examining the outcome. Actually, sensing may be 
seen as a form of action, and consequently, the definition of the sensory appearance of 
an object may amount to a script that encodes a sequence of actions necessary to 
recognize it. 

Based on the affordances of the agents [9, 10], which are constrained by the 
sensory modalities and the needs of the agents, internal representations are derived 
from interactions with the environment. 

Internally, world objects may be composed of sub-objects in spatial arrangements; 
the world maintains interactions between these objects by performing a discrete 
simulation, typically asynchronous to the agents. Agents, environment and 
computationally expensive world components (such as a simulation of plant growth) 
may run in a distributed network. 

Using a constructed virtual environment for learning and classification experiments 
is not without difficulty: in many cases, agents may do nothing but rediscover a 
portion of the ordering that has been carefully engineered into their environment 
before, which limits the complexity of what is learned to what has been pre-
programmed elsewhere. Additionally, the bias introduced by the artificial world may 
make it difficult to perform meaningful evaluations of the learning and classification 
results. On the other hand, because of shortcomings in perceptual and motor abilities, 
robots tend to be confined to a highly restricted and artificial environment as well. To 
put it a little provocatively: contemporary robots are often almost deaf, functionally 
blind, have restricted locomotion and only the simplest of push/grasp interactions 
available. It seems that many robotic testbeds (such as robotic soccer) can be quite 
satisfactorily simulated, and even significantly enhanced by incorporating additional 
modes of interaction and perception. 

The simulation world is part of an integral experimental framework, along with the 
network simulator and a number of tools that aid in performing experiments. [3, 4]. 
(We are also using the toolkit for other agent designs, for instance in Artificial Life 
experiments, and to control Khepera robots.) 

3   Representation Using Compositional Hierarchies 

3.1   Partonomies 

In MicroPsi agents, there is no strict distinction between symbolic and sub-symbolic 
representations. The difference is a gradual one, whereby representations may be 
more localist or more distributed. For many higher-level cognitive tasks, such as 
planning and language, strictly localist structures are deemed essential; in these 
procedures, individual objects of reference have to be explicitly addressed to bring 
them into a particular arrangement. However, a node representing an individual 
concept (such as an object, a situation or an event) refers to sub-concepts (using the 
“sub”-linkage) that define it. These sub-concepts in turn are made up of more basic  
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sub-concepts and so on, until the lowest level is given by sensor nodes and actuator 
nodes. Thus, every concept acts as a reference point to a structured interaction 
context; symbols are grounded in the agent’s interface to its outer and inner 
environment. 
There are several requirements to such a representation: 

• Hierarchies: abstract concepts are made up of more basic concepts. These are 
referenced using “sub”-links (i.e. these sub-concepts are “part-of” a concept). 
Because these sub-concepts are in turn made up of sub-concepts as well, the result 
is a compositional hierarchy (in this case, a partonomy). For example, a hierarchy 
representing a face can be made out of a concept of a face, “sub”-linked to 
concepts for the eyes, the nose, the mouth etc. The concept for the eye points to 
concepts for eyelids, iris etc. until the lowest level is made up of primitive image 
sensors like local contrasts and directions. Note that this representation is devoid of 
categories, we are only representing individual instances of objects. However, if 
similar instances are encountered later on, the representation may act as a classifier 
for that object structure. 

• Sequences: to encode protocols of events or action sequences, sequences of 
concepts need to be expressed. This is done by linking nodes using “por”-
connections. “por” acts as an ordering relation and is interpreted as a subjunction in 
many contexts. The first element of such a “por”-linked chain is called the head of 
a chain and marks the beginning of execution on that level. In our face-example, 
the “sub”-linked parts of the face concept could be connected using spatially 
annotated “por”-links that define a plan to first recognize the left eye, then the right 
eye, then the nose, then the mouth. These sequences may occur on all levels of the 
hierarchy. The mouth-concept for instance might be made up of a sequence 
looking for the upper lip and the lower lip etc. 

 

Fig. 5. Hierarchy of nodes, only “sub”-links are shown, reciprocal “sur”-links omitted 
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Fig. 6. Sequences in a hierarchy, reciprocal “sur” links and “ret” links omitted 

• Disjunctions: Since there might be more than one way to reach a goal or to 
recognize an object, it should be possible to express alternatives. Currently this is 
done by using “sub”-linked concepts that are not “por”-linked, that is, if two 
concepts share a common “sur/sub” linked parent concept without being members 
of a “por”-chain, they are considered to be alternatives. This allows to link 
alternative sub-plans into a plan, or to specify alternative sensory descriptions of an 
object concept. 

• Conjunctions: in most cases, conjunctions can be expressed using sequences 
(“por”-linked chains), or alternatives of the same concepts in different sequence 
(multiple alternative “por”-linked chains that permute over the possible sequential 
orderings). However, such an approach fails if two sub-concepts need to be 
activated in parallel, because the parts of the conjunction might not be activated at 
the same time. Currently we cope with this in several ways: by using weights and 
threshold values to express conjunctions (fig. 7a), with branching chains (fig. 7b) 
or with reciprocal “por”-connections (fig. 7c). In the first case, we encode the  
 

 

Fig. 7. Expressing conjunctions, reciprocal link directions (“ret” and “sur”) have been omitted 
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relationship to the parent by setting the weights ω1..n,i of the “sur/sub”-links from 
the alternatives u1..n to the parent ui and a threshold value θi of ui such that  ω1..n,i 
> θi and  ω1..n,i − ωj,i < θi for all individual weights ωj,i of an alternative uj ∈ 
{u1..n}. In the second case, we are using two “por”-links (i.e. two “por”-linked 
chains) converging onto the same successor node, and in the third, we are defining 
that fully “por”-connected topologies of nodes are given a special treatment by 
interpreting them as conjunctive. 

• Temporary binding: because a concept may contain more than one of a certain 
kind of sub-concept, it has to be made sure that these instances can be 
distinguished. Linking a concept several times allows having macros in scripts and 
multiple instances of the same feature in a sensor schema. In some cases, 
distinguishing between instances may be done by ensuring that the respective 
portions of the net are looked at in a sequential manner, and activation has faded 
from the portion before it is re-used in a different context (for instance, at a 
different spatial location in a scene). If this can not be guaranteed, we may create 
actual instances of sub-concepts before referencing them. This can be signaled by 
combining partonomies with an additional link-type: “cat/ref”, which is explained 
below. Note that sensors and actuators are never instantiated, i.e. if two portions of 
the hierarchy are competing for the same sensor, they will either have to go 
through a sequence of actions that gives them exclusive access, or they will have to 
put up with the same sensory value. 

3.2   Taxonomic Relationships 

If two different “por”-linked chains share neighboring nodes, and the relationship 
between these node is meant to be different in each chain (for instance, there is a 
different weight on the “por” and “ret” links, or the direction of the linkage differs, if 
they have different orderings in the respective chains), the specific relationship can 
not be inferred, because “por”-links are not relative to the context given by the parent. 
This can be overcome by making the chain structure itself specific to the parent, and 
linking the nodes to the chain structure via “cat/exp”-links (fig. 8). 

Thus, the structural intermediate node may hold activation values of the “exp”-
linked actual concept, which itself may be used in other contexts as well. Of course, 
an  intermediate  node  may  have  more  than  one  “exp”-link. In this case, the linked  

 

Fig. 8. a) Sharing of differently related features may lead to conflicts. b) Separating features 
and relationship with respect to parent 
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concepts become interchangeable (element abstraction). The intermediate node may 
be interpreted as a category of the “exp”-linked concepts. Using “cat” and “exp” 
links, it is possible to build taxonomic hierarchies. In conjunction with “sub” and 
“sur”, MicroPsi node nets may be used to express hybrid or parse structures [12]. 

Within MicroPsi agents, “cat/exp” links are also used to reference different 
instances of the same concept, for instance in plans and in the local perceptual space. 
Here, “cat” links may act as pointers to the actual concepts in long term memory. 
“cat” may usually be interpreted as an “is-a” relationship. 

3.3   Execution 

Behavior programs of MicroPsi agents could all be implemented as chains of nodes. 
The most simple and straightforward way probably consists in using linked concept 
nodes or register nodes that are activated using a spreading activation mechanism. 
Conditional execution can be implemented using sensor nodes that activate or inhibit 
other nodes. Portions of the script may affect other portions of the script by sending 
activation to associator nodes or activator nodes. However, for complex scripts, 
backtracking and re-using portions of the script as macros become desirable.  

For our purposes, a hierarchical script consists of a graph of options O, actions A 
and conditions C. Options might follow each other or might contain other options, so 
they can be in the relationships succ(o1, o2), pred(o1, o2) iff succ(o2, o1), 
contains(o1, o2) and part-of(o1, o2) iff contains(o2, o1). They might also be 
conjunctive: and(o1, o2) iff and(o2, o1), or disjunctive: or(o1, o2) iff or(o2, o1). The 
following restriction applies: and(o1, o2) ∨ or(o1, o2) ∨ succ(o1, o2) → ∃o3: part-
of(o1, o3) ∧ part-of(o2, o3).  

Options always have one of the states inactive, intended, active, accomplished or 
failed. To conditions, they may stand in the relationship is-activated-by(c, o), and to 
actions in is-activated-by(o, a) and is-activated-by(a, o). Options become intended 
if they are part of an active option and were inactive. They become active, if they are 
intended and have no predecessors that are not accomplished. From the state active 
they may switch to accomplished if all conditions they are activated by become true 
and for options that are part of them holds either, that if they are member of a 
conjunction, all their conjunction partners are accomplished, or that at least one of 
them is not part of a conjunction and is accomplished and has no predecessors that are 
not accomplished. Conversely, they become failed if they are active, one of the 
conditions they are activated by becomes failed or if all options that are part of them 
and are neither in conjunctions nor successor or predecessor relationships turn failed, 
or if they contain no options that are not in conjunctions or successions and one of the 
contained options becomes failed. And finally, if an option is part of another option 
that turns from active into any other state, and it is not part of another active option, it 
becomes inactive.  

The mapping of a hierarchical script as defined above onto a MicroPsi node net is 
straightforward: options may be represented by concept nodes, the part-of relationship 
using “sub” links, the successor relationship with “por” links etc. (In order to use 
macros, “exp”-links have to be employed as discussed in section 3.2.) 
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Conditions can be expressed with sensor nodes, and actions with actuator nodes, 
whereby the activation relationship is expressed using “gen” links. Disjunctions 
simply consist in nodes that share the same “sur” relationship, but are not connected 
to each other. This way, there is no difference between sensory schemas that are used 
to describe the appearance of an object, and behavior programs: a sensory schema is 
simply a plan that can be executed in order to try to recognize an object.  

Even though the notation of a script is simple, to execute hierarchical scripts, some 
additional measures need to be taken. One way consists in employing a specific script 
execution mechanism that controls the spread of activation through the script. We 
have implemented this as a script execution module that will “climb” through a 
hierarchical script when linked to it (fig. 9). 

Here, the currently active option is marked with a link and receives activation 
through it. “sub”-linked options get their intended status by a small amount spreading 
activation. By preventing this pre-activation from spreading (for instance by using 
inhibitory connections from outside the script), it is possible to block portions of the 
script from execution. 

Actions are handled by sending activation into an actuator node and waiting for a 
specified amount of time for its response. If the actuator node does not respond with a 
success signal, the script will fail at the respective level and backtrack; backtracking 
positions are held in a stack that is stored within the script execution module. 

The drawbacks of this approach are obvious:  

- There is no parallel processing. Only one option is being activated at a time. In 
the case of conjunctive nodes, the activation focus is given to the one with the 
highest pre-activation first. If all conjunctive options have the same activation, 
one is randomly chosen 

 

Fig. 9. Using a native module for script execution 
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- The activation of the individual nodes poorly reflects the execution state, 
which is detrimental to some learning methods (like decaying of rarely used 
links). 

- The approach does not seamlessly integrate with distributed representations, 
i.e. it is for example not advisable to perform back-propagation learning on the 
node hierarchy. (It is still possible to add lower, distributed layers that will be 
interpreted just like sensor and actuator nodes, though.) 

On the other hand, it is also possible to devise a specific node type that spreads 
activation in the following manner: each node has two activation values, the request 
activation ra , determining whether a node attempts to get confirmed by “asking” its 

sub-nodes, and a confirm activation ca  that states whether a node confirms to its 

parent concepts, where for each node: 0 c ra a  (or 0ca <  to signal failure). 

When a node gets first activated, it switches its state from inactive to requested. It 
then checks for “por”-linking neighbors (i.e. the corresponding slot): if it has no 
unconfirmed predecessors (i.e. nodes that possess a “por”-link ending at the current 
node), it becomes requesting and starts propagating its request activation to its “sub”-
linked sub-concepts. In the next step, it switches to the state wait for confirmation, 
which is kept until its “sub”-linked children signal either confirmation or failure, or 
until their “sub”-linking parent stops sending a request signal. After confirmation, the 
node checks if it has “por”-linked unconfirmed successors. If this is not the case, 

ca gets propagated to the “sub”-linking parent node, otherwise ca  is propagated to the 

successor node only. The node then remains in the state confirmed until its parent 
node stops requesting, then goes back to inactive. (Failures are propagated 
immediately.) 

With this mechanism, we can describe conjunctions and disjunctions using 
weighted links. Since the execution of a script is now tantamount to pre-activating a 
hypothesis (the portion of the script we want to try) and its failure or success 
translates into a match with a sensor configuration, we may use the data structure for 
back-propagation and other neural learning methods. The distributed nature of 
execution makes supervision of the execution more difficult, but enables parallel 
distributed processing. (It should be mentioned that we can not use simple chains of 
“por”-linked nodes with this approach, without also “sub”-linking each of them to the 
same parent node. This is less of an issue for the script execution module, because it 
can determine the parent of each element of a sequence by parsing backwards along 
the “ret” links to the first element. But because this might take additional time in the 
case of backtracking, it seems always a good idea to declare the part-of relationship of 
each sequence element explicitly.) 

4   Perception 

The perceptual mechanism of the agents follows a bottom-up/top-down approach. If a 
sensor is triggered by some prominent environmental feature, activation spreads 
upward (“sur”) and activates all concepts this sensor is part of. These concepts are 
then marked as perceptual hypothesis by linking them to an activation source. From 
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now on, script execution is performed as described above: On each level of each of 
these concepts, activation is spreading down again to test the other parts deemed 
necessary to identify them. If the sensors connected to these other parts report success 
(i.e. find a corresponding feature in the environment), then the concept itself becomes 
confirmed, otherwise it will be marked as “failed”. Thus, activation spreads upward, 
“suggesting” theories of what is there to be perceived in the environment, then down, 
“testing” those theories, then up again, confirming or disconfirming them. The 
remaining confirmed concepts are considered the immediate percepts of the agent and 
are made available in a distinct node-space for further processing. (In Dörner’s work, 
this mechanism is called “hypothesis based perception”.) 

4.1   Building Structured Representations of the Environment 

Before partonomies can be employed to recognize objects, the agent has to construct 
them. There are several ways to do this. The first step, called accommodation, has 
been suggested by Dörner [6] and consists in using basic perceptual levels to arrive at 
a simple division of compositional layers: for instance by putting direction sensitive 
detectors for line elements at the lowest level. These make up contour segments, 
which are in turn parts of gestalts, and these may be combined into object schemas, 
which finally make up more complex objects and situations. However, the main 
problem turns out not to be the initial construction of such a simple partonomy, but its 
extension and modification, whenever new examples are encountered by the agent. In 
realistic environments, perception tends to be partial and somewhat uncertain, and 
different instances of a perceptual class may have somewhat different appearances. 
We combine two different approaches: 

Whenever we come about a partonomic graph describing a percept that has not 
been encountered before in exactly the same way, we perform a graph matching 
procedure with existing object representations to obtain a similarity measure. For this, 
we are using the MatchBox algorithm [13] that estimates the best match according to 
node topology and link weights with a Hopfield network. 

If we encounter a prototype with sufficient similarity, the new percept is merged 
with it by adding new nodes where necessary, and by adjusting link weights. If the 
percept does not exhibit much similarity to anything encountered before, a new 
prototype is created. (However, if the new object lends itself to similar interactions as 
another already known object, the perceptual descriptions might be merged as 
disjunctions in the future.) 

The other method makes use of Knowledge Based Artificial Neural Networks 
(KBANN) [14, 15]. It works by using a partial, possibly incorrect domain theory that 
is given to the agent in the form of propositional logical clauses. These are converted 
into a hierarchical graph, where the lower level (sensor nodes and actuator nodes) are 
the precedents which are “sur”-linked to their antecedents. Conjunctions, disjunctions 
and negations are expressed by using weighted links and threshold values.  

When activation is given to the sensor nodes according to the logical values of the 
antecedents, it spreads along the links and activates the compositional nodes higher up 
in the hierarchy in such a way as to evaluate the clauses.  
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The graph is then extended by a few randomly inserted nodes and additional sensor 
nodes to lend it more flexibility. These new nodes are given link weights close to 
zero, so they do not affect the outcome of the spreading activation. Furthermore, weak 
links are added across the hierarchy. The network is then used to classify examples 
encountered by the agent and is adapted using standard back-propagation. The 
additional nodes allow the insertion of additional abstract features, and the additional 
links make generalization and specialization possible. 

4.2   Learning Action Sequences and Planning 

The planning capabilities of our agents are still very basic. To achieve at a repertoire 
of action sequences, they maintain a protocol memory made up of “por”-linked 
situations in the environment, whereby a situation consists of a spatial arrangement of 
recognized objects, along with actions performed on them. Whenever a situation is 
correlated with a positive or negative effect upon the urges of the agent (for example, 
the agent has reduced its need for water by collecting some), the links to the 
preceding situations are strengthened according to the impact of this event. Because in 
protocol memory, links below a certain strength decay over time, event chains leading 
to situations of importance to the agent (where it satisfied a need or suffered damage) 
tend to persist. 

When the agent establishes a goal from an urgent need, it first looks for a direct 
chain leading from the current situation to the goal situation. If it can not find such an 
automatism, it attempts to construct such a chain by combining situations and actions 
from previous experiences, using a limited breadth-first search. If it does not succeed 
in constructing a plan, it resorts to either a different goal or to try-and-error behavior 
to create more knowledge. 

5   Outlook 

In MicroPsi agents, we combine neural network methods with compositional 
hierarchies that lead to localist, abstract representations of the environment suitable 
for planning. However, much work remains to be done. Currently, we are concerned 
especially with the representation of space and time and the implementation of an 
inheritance mechanism that allows distributing information along taxonomical 
hierarchies, as these seem to be a prerequisite for more generalized approaches to 
perception and memory. 

While we are busy extending the simulation environment with more operators, 
more complex objects and relationships between them, we are planning to use the 
architecture more extensively with real-world sensor data and for the control of robots 
in the near future. 
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MaximumOne: An Anthropomorphic Arm with
Bio-inspired Control System

Michele Folgheraiter and Giuseppina Gini
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piazza Leonardo da Vinci 32, Italy

Abstract. In this paper we present our bio-mimetic artificial arm and
the simulation results on its low level control system. In accordance with
the general view of the Biorobotics field we try to replicate the struc-
ture and the functionalities of the natural limb. The control system is
organized in a hierarchical way, the low level control reproduces the hu-
man spinal reflexes and the high level control the circuits present in the
cerebral motor cortex and the cerebellum. Simulation show how the sys-
tem controls the single joint position reducing the stiffness during the
movement.

1 Introduction

Developing an artificial arm that mimics the morphology and the functionali-
ties of a human limb is the principal goal of our work. In designing the arm we
adopted a biomimetic approach; this means that at the beginning we dedicated
a big amount of time in studying the natural limb from the anatomical, physio-
logical and neurological point of view. After these studies we tried to integrate
knowledge from different scientific and technological fields in order to synthesize
the robot. We can state that the approach we adopted is in accordance with the
general view of the Biorobotics field.

People involved in this robotics branch ,[1],[2],[3],[4],[5],[6] believe that study-
ing and mimicking a biological organism allows us to design a robot with more
powerful characteristics and functionalities than a classical robot, as well as to
better understand the organism itself. Indeed, if we think of the history of tech-
nology, often humans were inspired by nature. Famous are the studies conducted
by Leonardo da Vinci between 1487 and 1497 on the flying machines, that were
inspired by the birds. This does not mean that observing and studying nature
we can find out the best solution for a specific problem. In fact, for example,
our technology can synthesize flying machines that are much faster than any
biological organism.

An important question, that will arise if you are involved in this research
field, is: why emulate the human body? Many scientists are convinced that for a
robot whose purpose is to work with people, human morphology is necessary. In
millions of years the human species has adapted the environment to its needs,
developing tools and things that are suitable for its morphology. So, if we want

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 281–298, 2005.
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a robot to collaborate with a human being in a unstructured environment, it
must have human shape and human-like manipulation capabilities. It is clear
that, from a technical point of view, it is not possible, and at the same time
not necessary, to reproduce in detail the human body’s functionalities and mor-
phology. Instead what is desirable for a futuristic humanoid robot is the same
human mobility, manipulation capability and adaptability. Another aspect that
justifies research in this field, as well as in the biorobotics field in general, is the
utilization of biomimetic robotic systems as a new tool to investigate cognitive
and biological questions. Collaboration between neurologists, psychologists and
roboticians can be a useful way to improve in each specific field. Engineers can be
inspired by neurological and psychological studies in the synthesis of the artificial
system, and at the same time, neurologists and psychologists can better under-
stand the biological system analyzing results coming from the experimentation
on the artificial system.

In section 2 we will introduce the state of the art in this robotics field. Sec-
tion 3 describes our experimental prototype from the kinematical and mechanical
point of view. In Section 4 the control system architecture is outlined with partic-
ular attention to the reflex module. Finally the last section brings the conclusions
to this work.

2 State of the Art

Robotics since its origin was involved in replicating human manipulation capa-
bilities. In order to better understand the motivation pushing researchers toward
humanoid robotics it is useful to look at the robot arms’ history. One of the first
robots for research purposes was the Stanford arm, designed in the Stanford
Artificial Intelligence Lab. This robot has 6 DOFs (Degrees Of Freedom) , five
revolute joints and one prismatic, therefore it can not be classified as anthropo-
morphic, nevertheless it was one of the first attempt to reproduce human arm
manipulation capabilities.

In the sixties General Motor (the first to apply a robot in industry) financed
a research program at MIT that developed another famous robot: the PUMA
(Programmable Universal Manipulator for assembly).

This manipulator has 6 rotational DOF’s and therefore it is classified as
anthropomorphic; we can say that this robot was clearly inspired by biology.
Indeed it is possible to compare this robot to a human arm; we can divide the
mechanical structure in three principal blocks: the shoulder with two DOF, the
elbow with 1 DOF and the wrist with another three DOF. The Puma has a
dexterity that is quite near to that of a human arm, even though the human
shoulder has more than two DOF. The analogy between the human arm and the
PUMA manipulator is true only from a kinematic point of view, because the two
systems have completely different performances. We can assert that this robot
is more precise than the human arm, but at the same time the human arm can
exhibit a compliant behavior that is indispensable to perform certain tasks like
use a screwdriver or clean a complex surface.
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It is clear that for industrial applications, a classical manipulator is better
than a human arm. For example a manipulator is stronger than a human limb.
The load for a medium size robot is about 10 Kg, but a human being finds it
difficult to move, in every position of the workspace, such a weight. Manipulators
are more precise and accurate in positioning the end-effector and furthermore
they are free from fatigue problems that affect the human arm during intense
activities.

Nevertheless from another point of view, the human arm is superior to robots.
It is lighter and therefore it has a big force to weight ratio (100N/20N=5) with
respect to an artificial manipulator(100N/3000N=0.03). Right now, with present
technology, we are far away from the possibility to emulate human arm efficiency
and functionality. What is lacking today is a system that presents the same
flexibility and the same compliant behavior as the human limb. In this context,
the applicability of industrial robots remains confined in the factories. Therefore,
at the moment, a lot of research in order to bring robot systems also in the
household and in the public environments is still needed.

Right now there are many research groups involved in developing humanoid
artificial arms; usually the simple robot structure comprises one or two arms,
a torso and a head equipped with a vision system. Because light-weight and a
compliant behavior is needed for the robot, a lot of research was done on novel
actuators able to mimic, at least from the macroscopic point of view, the human
muscle.

At the Center for Intelligent Systems (Vanderbilt University) Prof. Kawa-
mura and its group are working on the ISAC humanoid robot.

This robot consists of a human-like trunk equipped with two six-DOF arms
moved by McKibben artificial muscles[4]. The system has also a four-DOF stereo
vision head with voice recognition that permits interaction between the robot
and humans. Each joint is actuated by two antagonistic actuators that are con-
trolled by a system able to emulate the electromyogram patterns (EMG) of a
human muscle. In particular the pressure inside the actuator is governed by a
control signal analogous to the tonic and phasic activation of the muscle; it con-
sists in three phases (agonist-antagonist-agonist) that permits the single joint
to reach a precise position. The sensorial information are used to correct for
misperceived loading conditions and to compensate eventually variations of the
physical characteristics of the robot’s actuators. The arm, during a fast reaching
movement, can avoid an obstacle performing a reflex behavior [7], furthermore
the phasic pattern is autonomously adjusted when a reach trajectory doesn’t
closely match a desired response. The main advantage of this bio-mimetic con-
trol architecture is the possibility to reduce the joint stiffness during a movement
execution; this permits at the same time to save energy and to perform move-
ments that are not dangerous for human beings.

Another project in the same direction is that one at the Biorobotics Labora-
tory in Washington University. Here Prof. Hannaford and his team have worked
intensely on the emulation of the human arm [8] [3]. The goal of this research
is to transfer knowledge from human neuro-musculo-skeletal motion control to
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robotics in order to design an ”anthroform” robotic arm system. They introduce
the new word ”anthroform” to describe a robotic arm in which all aspects of its
design are specified in terms of emulation of the corresponding functions of the
human arm. They tested the elastic property of the McKibben actuators [9] [10]
and proposed a more accurate dynamic model. In comparison with experiments
conducted on human and animals muscle[11] they show how these type of actua-
tors are, actually, the best choice to implement an anthropomorphic robot arm.
Following the bio-mimetic approach they also developed a new kind of sensor
[12] [13], whose purpose is to replicate a mammalian muscle spindle cell, that
measures the contraction and the muscle velocity.

Since they maintain that it is very hard to create a realistic model of the
human arm, they prefer to make experiments directly on the robotic arm and
subsequently compare the data with that of a human limb. They are interested
not only in the emulation of the human arm actuation system but also in the
emulation of the spinal cord reflexes to control the artefact. Here, in comparison
with the Kawamura et al. approach, they based the control system on studies
conducted by neurophysiologists on the neural circuits delegated to generate the
basic arm reflexes. In order to build a real time controller they implemented
the neural circuit in a DSP (Digital Signal Processor) and acquired data coming
from the force and position sensor with a dedicated computer.

The principal experiment conducted on this system was the cyclic application
of a noise force on the forearm and the measurements of the joint angle deviation.
This was made in many conditions and changing the neural network parameters.
After a large amount of experiments they calculate the covariance between the
more important variables in order to better understand their correlation. This
analysis shows which are the variables and the sub-networks involved in a certain
behavior, and allows formalizing hypothesis also on the human limb. The results
show that muscle co-contraction and other circuit parameters can regulate the
joint stiffness and damping.

3 The ARM Prototype

The arm developed in our laboratory (Figure 1), is intended to be the ideal test-
bed for testing the control system architecture proposed in this work and for
improving new technologies applicable to humanoid robotics. The arm, without
considering the wrist and hand, that are still under development, has two joints
for a total of four degrees of freedom. The shoulder consists in a spherical joint
with 3 DOF, and the elbow is a rotational joint with 1 DOF. Joints are moved by
tendons connected with McKibben artificial muscles, which in turn are bonded
with the support structure and the upper arm. Each ”muscle” is equipped with
a force sensor mounted in series to the actuator (comparable, from a functional
point of view, with the Golgi tendon organ in the human arm) and of a po-
sition sensor located in parallel to the external shell that covers the artificial
muscle (comparable, from a functional point of view, with the muscle spindle
in the human arm). The elbow joint has also an angular sensor (Figure 1)that
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Fig. 1. The Arm Prototype, MaximumOne, Artificial Intelligence and Robotics Labo-
ratory, Politecnico di Milano

measures the joint position and velocity with more precision. Sensor signals are
conditioned and gathered by dedicated boards and sent to a PC A/D card. The
control system runs in real time on a target PC, and its output are converted in
appropriate signals that feed the actuation system.

As it is possible to see in the prototype picture (Figure 1), this arm has an
anthropomorphic design. In particular, during the design, we have tried to re-
produce the human arm dimensions and proportions, the articulation mobilities,
the muscle structure, and the same sensorial capabilities. The actuation system
is composed of seven muscles: five actuate the shoulder joint and two the el-
bow. This permits us to fully actuate the joints but at the same time to have a
minimal architecture. The five shoulder actuators emulate the function of: pec-
toralis major, dorsal major, deltoid, supraspinatus and subscapularis muscles.
The two elbow actuators emulate the function of biceps and triceps muscles.
In comparison with the human arm musculature, the actuation system of our
prototype is quite different, for example the biceps and triceps artificial mus-
cles are mono-articular in the sense that they are dedicated only for the elbow
actuation.

4 Architecture of the Control System

In designing the control system for the arm we tried to mimic the human nervous
system; the architecture is organized in a modular-hierarchical fashion. At the
bottom level (Figure 2) there are the artificial reflex modules that govern the ac-
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tuator’s contraction and force. These modules receive inputs from the joint path
generator, which in turn is fed by the inverse kinematic module that computes
the target actuators lengths. The reflex modules also receive inputs from the
cerebellar module whose function is to regulate the path generator outputs. The
cerebellum module, as inputs, receives signals from the path generator modules
and the error signals from the reflex modules. The inputs of the entire control
system are: the final hand position in the cartesian space, the GO signal that
scale the speed of movement and the P signal that scales the level of artificial
muscles co-activation (simultaneously activation of the muscle that govern the
same joint).

From a hierarchical point of view, we can distinguish three principal levels:

High level controller: composed of the Inverse Kinematic and the cerebellum
modules that cooperate in parallel to control the path generator activity

Medium level controller: composed of the path generator module. This is
capable of generating desired arm movement trajectories by smoothly inter-
polating between the initial and the final length commands for the synergetic
muscles that contribute to a multi-joint movement.

Low level controller: composed of the reflex modules that control the artifi-
cial muscles activities

The signals transmitted from one module to another are expressed in a vecto-
rial form, where each vector component corresponds to one of the seven artificial
muscles that compose the actuation system. Therefore LT represents the target
lengths vector for the actuators, VT represents the target velocity vector for the
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actuators, EL represents the length vector error of the actuators, CS is the sig-
nal vector generated by the cerebellum module, and P is the stiffness command
vector. At the level of each single module these signals are decomposed in their
components and sent to the appropriate submodules.

In this document, for brevity, we do not deal with the cerebellum module
that operate in feedforward manner in order to compensate Coriolis and inertia
force during rapid movements [14],[15]. Instead we will concentrate our attention
on the modules that govern the arm during normal conditions.

4.1 Inverse Kinematic Module

Given the final position for the wrist, in order to calculate the muscles lengths,
it is necessary to solve the inverse kinematics problem. A necessary, but not suf-
ficient, condition for the existence of the solution, is that the point that we want
to reach is inside the arm’s workspace. In robotics terminology the manipulator
workspace is the portion of the space that is reachable by the robot’s hand. If
we take into account only the target point and we do not consider the arm ori-
entation when the target is reached, the inverse kinematic problem, in our case,
has an infinite number of solutions. This is due to the fact that to reach a point
in a three dimensional space only three degrees of freedom (3DOFs) are needed,
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Fig. 3. Frontal View of the Arm in three different configurations, each line depicts a
link or an artificial muscle
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Fig. 4. Architecture of the Multilayer Perceptron

but our arm has four DOFs. To find a single solution we impose, in the system
equations, a constraint on the orientation of the plane formed by the upper and
forearm with the robot’s sagittal plane. Normally this angle in a human being
is about 20 degrees and remains fixed during the arm movement (Figure 3).

It is possible to approach the inverse kinematic problem in two ways: using
the direct kinematics to generate input-output pairs that can be used to train a
neural network, or solving other systems of equations where the wrist position
is imposed. We followed the first approach which seems to be more appropriate
to this situation. In order to obtain the input-output pairs necessary to train a
neural network, we executed the direct kinematic algorithm on a sufficient set
of inputs. Each input was an admissible vector of actuator lengths (as admissi-
ble we intend a set of muscle lengths that bring the wrist in a position inside
the workspace ). To determine the correct intervals for the actuator lengths, we
performed some measurements directly on the real arm prototype. In a second
step, when this data was known, we created a data set of points each represent-
ing a vector of actuators lengths. Finally we calculated the corresponding wrist
position.

As a neural network architecture we chose a multilayer perceptron [16] with
an input layer of three neurons, two hidden layers of 20 neurons each, and an
output layer of seven neurons. As an activation function for the neurons we chose

Fig. 5. Trend of the medium square error after 50 epochs
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Fig. 6. The Generalization Error on the wrist position (calculated on 28 points)

a sigmoid, and for the network training the back propagation algorithm. Before
training, the input-output pairs were normalized in order to obtain values in the
interval (-1,1). We have used a set of 1081 training data, that was obtained using
points in the workspace at distances of 5cm. The trend for the medium square
error is reported in figure 5.

As we see from the graph the error, after 50 epochs, decreases under the
value 2 · 10−3. After 1000 epochs the error reached the value of 1.6 · 10−4. This
required 16 hours of computation on a Pentium-4 (2GHz) equipped with 500 Mb
of memory. After the net was trained we conducted a series of tests to understand
if the neural network exhibits a generalization behavior. Therefore we gave to
the net positions for the wrist that were different from the positions used for
training, and we calculated the error of generalization. In figure 6 we can see the
error for 28 wrist positions.

The median value in positioning the wrist is about 0.8 cm, which is a good
value for our purposes.

The main advantage in using a neural network to compute the inverse kine-
matics is that we can train the network on values acquired directly on the real
arm. This overcame the limitations in using an approximate arm model, and is
suitable especially for complex kinematic chains as found in a humanoid robot.
The other advantage is that the time required for the network to compute the
inverse kinematic, for a given point in the workspace, is low in comparison with
other algorithms. Indeed, when the network is trained, the operations required
to calculate the outputs are simple additions and multiplications.

4.2 Path Generator Module

The path generator module is capable of generating desired arm movement tra-
jectories by smoothly interpolating between the initial and the final length com-
mands for the synergetic muscles that contribute to a multi-joint movement. The
rate of the interpolation is controlled by the product of two signals: the start
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signal GO and the output of the Vi cell, that computes the error in the length
of the muscle ith. The Go signal is a volitional command that in our case is
formalized by the equation 1:

GO(t) = Go
(t − τi)2

k + (t − τi)2
u[t − τi] (1)

where parameter Go scales the GO signal, τi is the onset time of the ith volitional
command, k takes into account the time that the GO signal needs to reach the
maximum value and u[t] is a step function that jumps from 0 to 1 to initiate the
movement. The Vi cell dynamics is defined

d

dt
Vi = K(−Vi + Lti − Ai) (2)

where Lti is the target length for the ith muscle, the constant K defines the
dynamic for the cell and Ai defines the present length command for the ith

muscle. The model for the neuron Ai is defined in equation 3.

d

dt
Ai = GO · Th(Vi) − GO

n∑
k=1,k 	=i

·Th(Vk) (3)

A3

V3

LT3

GO

Lt3

A4

V4 V5

A5

LT4 LT5

Lt4 Lt5

Deltoid Actuator
Pectoralis Actuator

Excitatory
Inhibitory

Dorsal Actuator

Fig. 7. Architecture of the Path Trajectory Generator Module
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Fig. 8. Signals generated by the Path Generator Module that governs the elbow

Where again the Th is the same threshold function used for all the cells of
our model. Study of Bullock and Grossberg [17] have demonstrated that this
path generator model can be used to explain a large number of robust kinematic
features of voluntary point to point movements with a bell-shaped velocity pro-
file. The architecture for the path generator is presented in figure 7. The circuit
is suitable for the three muscles of the shoulder joint that permit the upper
arm flexion-extension and adduction-abduction. The trajectory generators for
the arm’s other muscles are quite similar to that one presented. The inputs for
the system are the target lengths Lti for each muscle and the outputs are the
signals Ai that will feed the inputs of the reflex module of each joint. An example
of signals generated by the elbow path generator is presented in figure 8.

4.3 Joint Reflex Control Module

In order to perform the Reflex behaviors we implement a simplified model of the
natural circuits present in the human spinal cord. With respect to other models
in literature [18],[19],[20],[21], or to hardware solutions [22] we decided to neglect
the spike behavior of the neuron for all the artificial cells, instead we concentrated
our attention on modelling its membrane potential. From an information point
of view the spiking behavior in the neuron is not so crucial. In a living organism
the action potential mechanism permits to convert information, represented by
the neuron potential (analog signal), into an impulsive signals. In such a manner
the information is transmitted modulating the frequency of the impulsive signal.
This is particularly useful when the signal (of few mV) is transmitted over a long
distance, for example from the arm receptors (peripheral nervous system) to the
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central nervous system. In our system (arm prototype) the entity of the sensor
signals are in the order of some volts, and all the information are processed in a
normal CPU, so it is not efficient to convert the analog signals into a impulsive
signals. The reflex module that governs the elbow muscle is represented in figure
9. It implements an opponent force controller whose purposes are to attempt
to implement the path generator module commands, measure movements error
and return error signals when the execution is different from the desired move-
ment. In figure 9 M6 and M7 are the motoneurons that control the contraction
rate and force of the triceps and biceps actuators respectively. Ia6 and Ia7 are
the interneurons that receive the error signals from the artificial spindles and
project, with inhibitory synapses, to the motoneurons of the antagonist muscles
M7 and M6 respectively. R6 and R7 represent the Renshaw cells that receive
the error signals from spindles and inhibit the corresponding motoneuron and
Ia cell, they are important to reduce oscillations of the joint around the target
angular position. Ib6 and Ib7 are interneurons that receive the signals coming

Elbow Joint

Μ6 Μ7

R6 R7

Ia6 Ia7

Ib6 Ib7

Inc6 Inc7

Ins6 Ins7

Ms6 Ms7

Lt6 Lt7P6 P7Cs6Cs7Vt6 Vt7

Biceps Actuator
Triceps Actuator

Excitatory
Inhibitory

Fig. 9. Architecture of the Elbow Reflex Module
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from the artificial Golgi tendon organs (that in this system are represented by a
normalized force measurements). Inc6 and Inc7 are interneurons whose purpose
is to integrate information coming from the cerebellum (signals Cs6 and Cs7)
and from the Ins6 and Ins7 interneurons, thanks to these cells the cerebellum
module can apply its influence on the overall joint movement. Ins6 and Ins7 are
the interneurons that integrate information of stiffness and target length com-
mands. Finally Ms6 and Ms7 represent the artificial muscle spindle receptors.
As inputs they receive the muscle velocity command, the muscle target length
command and the actual muscle length and in turn excite the corresponding
motoneuron and Ia interneurons.

Neurons Model. It is possible to model the artificial neuron using a not linear
differential equation. Different neurons, in the circuits, differ only for the con-
stant values and the inputs, therefore here we will describe only the motoneuron
equations.

The motoneuron receives its inputs from almost all the cells that compose the
neural circuit. In equation 4 Mi represents the potential (membrane potential)
of the motoneuron i.

d

dt
Mi = (1 − Mi)(exci) − Mi(inhi) (4)

where the terms exci and inhi are expressed by equations 5

exci = w1 · Ei + w2 · Inci +
∑n

k=1,k 	=i(zk · Ibk)
inhi = K + w3 · Ri + w4 · Ibi +

∑n
k=1,k 	=i(vk · Iai)

(5)

the motoneuron output is
Moi = Th(Mi) (6)

where the threshold function is defined by equations 7 :

Th(x) =

⎧⎪⎨
⎪⎩

x if 0 ≤ x ≤ 1
0 if x ≤ 0
1 if x ≥ 1

(7)

The first term in the right side of the equation 4 is the gain for the excita-
tory part (exc); this gain is a function of the motoneuron potential. Therefore,
the more the neuron is active the smaller the gain will became. This avoids the
neuron’s potential saturating rapidly when the excitatory synapses are strongly
stimulated. The second part of the equation 4 gathers the inhibitory signals that
feed the motoneuron (inh). In the (inh) term the inhibitory signals are mul-
tiplied by the corresponding synapse’s gain wi and vk, and added together. It
is clear, that the gain for the excitatory part (Equation 4) will decrease when
the motoneuron potential increases. This contributes to maintain the neuron
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activation confined under the maximum value. The summation in the (inh) part,
takes into account of the inhibitory action of the antagonistic Iai, the summation
is extended to n, the number of motoneurons that constitute the reflex circuit
(n=2 for the elbow reflex circuit and 3 for the shoulder reflex circuit).

The term K represents the leaky current of the neuron membrane. When the
neuron is not excited its potential will decrease thanks to this term. Finally Ei

is the error signal coming from the spindle cell Msi.

5 Test on the Reflex Module

In the first simulation we tested the capability of the reflex module to govern
the actuator pressures in order to regulate the joint position. In this simulation
the biceps and triceps length commands were manually set, therefore the path
generator module, and the inverse kinematic module are not yet connected to the
reflex circuit. In figure 10 the elbow angular position during the entire motion is
reported.We see that the elbow position in the first movement reaches 0.4 radians
(24.2o), with the second movement that starts at the fifth second it reaches 1.15
radians (70o), and finally the joint is restored to the first position.

Note that in the first movement there is a big over-elongation, partially due
to the fact that when the first movement starts all the neurons potentials are set
at the minimum value, and it take a certain time for the neurons to reach the
operative value. In the arm prototype a minimum motoneuron activity is needed
in order to maintain a sufficient pressure inside the artificial muscles. This is to
avoid the detachment of the inner tube from the external braided shell.

It is possible to note from the graph, that also in the second joint movement
there is a certain over-elongation, but this is reduced in comparison with the
first one.

From figure 10 it is possible to see how the elbow’s velocity follows a hu-
man bell shape profile, thanks to the smooth control behavior of the motoneu-
rons.

Fig. 10. The Angular position and velocity of the Elbow
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Fig. 12. Motoneuron and interneurons activities during the Elbow flexion

In figure 12 are reported the motoneuron and interneuron signals during the
elbow flexion. Starting from the bottom we can see the activities of the artificial
spindles Msi that measure the length and velocity errors in the biceps and triceps
actuators. When the first elbow movement starts, the biceps’s spindle increases
its activity rapidly this is because, in comparison with the length command,
the actuator should be shorter. After 0.8 seconds the biceps’s Ms decreases its
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Fig. 13. The Angular position and the forces generated by the Biceps and Triceps
actuators of the Elbow in the second experiment

activity to zero , but at the same time there is a burst in the triceps’s Ms, due
to the fact that the elbow has overshoot the target position and therefore the
triceps should be contracted. Looking at the axes that report the Ia interneuron
outputs, it is possible to note that the activity of these neurons are strictly
correlated with those of the Ms. Nevertheless their effect, now, is transmitted
on the antagonistic motoneuron. This action is very important for the elbow
joint control. Indeed thanks to this cross inhibition a big length or velocity error
on an artificial muscle, not only increases its pressure, but decreases at the same
time the pressure in the antagonistic artificial muscle. We can see this influence
in the motoneurons activities or directly on the actuator force.

In this first simulation we prevented the action of the Ri (Renshaw cells)
interneurons, as it is possible to see in the graph of figure 12. They are important
to maintain the motoneuron activity under control when the elbow has reached
a stable position. From the graph that depicts the actuator force (Figure 11)
it is possible to note that when each movement is ended the force increases
autonomously in both the motoneurons, this causes a stiffness increasing in the
elbow joint. In humans this disease is called hypertonia.

In the following simulation we enabled the Ri interneurons and performed
the same movements as the first experiment (Figure 13).

This time, even thought the elbow performed the same movements, the ac-
tuators force changed. Indeed from the second graph of figure 13 it is possible to
note that after each movement the forces don’t increase like in the first exper-
iment. This behavior is due to the Ri interneurons that limit the motoneurons
potential when the elbow doesn’t move. It is possible also to note that for the
same elbow movement the forces applied by the two actuators are smaller in
comparison with the other experiment. This behavior is very important because
it permits the saving of energy especially during operations that do not require
the movement of objects.
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6 Conclusions

The main aim of this work was the development of a human-like artificial arm
for application in the field of humanoid robotics. Because mimicking the human
arm from the mechanical and functional point of view was one of our principal
research aims, we conducted an intensive study of the natural limb. We concen-
trated our attention to the design and the implementation of a real human-like
robotic arm, and at the same time, to developing a possible control model based
on the actual knowledge that neurophysiologists have of the human nervous
system.

Our arm differs from other analogous systems [23], [3], [24], by the presence of
a full 3DOF shoulder joint moved by five artificial muscles. Furthermore, thanks
to the employment of light materials, the system can be integrated with a whole
humanoid robot. Results, on the low level control system, show how it can set
the single joint position and stiffness in a efficiently way.
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Abstract. This paper presents a human-like control of an innovative
biped robot. The robot presents a total of twelve degrees of freedom; each
joint resemble the functionalities of the human articulation and is moved
by tendons connected with an elastic actuator located in the robot’s
pelvis. We implemented and tested an innovative control architecture
(called elastic-reactive control) that permits to vary the joint stiffness in
real time maintaining a simple position-control paradigm. The controller
is able to estimate the external load measuring the spring deflection and
demonstrated to be particularly robust respect to system uncertainties,
such as inertia value changes. Comparing the resulting control law with
existing models we found several similarities with the Equilibrium Point
Theory.

1 Introduction: The Biped Robot

The development of a humanoid robot usually requires relevant investments,
comprehensive design and complex mathematical models. With LARP (Light
Adaptive-Reactive biPed) we designed a simple and easy-to-reproduce biped,
which could be at the same time cheap and efficient. The goal of this research
is to create a system that could be used as a model of human lower limbs.
Having such a model can help understanding how the natural walking motion is
achieved and how it can be implemented in a humanoid robot [1]. An interesting
research in this direction is the functional electrical stimulation in paraplegics
[2],[3]; to make this people walk using external input signals to the muscles, it
is fundamental to have a reliable walking pattern and a good muscle model.
Indeed, the development of prosthesis, orthosis and rehabilitation devices for
human lower limbs requires the knowledge of kinematics and dynamics of human
walking.

For this reasons, we implemented an anthropomorphic biped robot, with feet,
knees and a mass-distribution similar to the human limbs (fig.1). The prototype
has twelve active degrees of freedom, disposed as follows: three in the hip, one
in the knee and two in the ankle (pitch and roll) of each leg.

In particular, the foot is provided with two passive degrees of freedom, rep-
resenting the heel and the toe (fig. 2.a); in this way, we have a planar base on

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 299–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a. b.

Fig. 1. (a) The 3D cad assembly of the robot. We can notice that the motors are
collected in the upper part of the robot. The transmission to the joints is performed
by tendons. (b) The prototype itself, here with only one actuated leg

which lean during the whole step. In addition, a pseudo Achilles tendon is used
to absorb the impact with the ground, as it is performed in humans [4],[5]. An-
other innovation of the mechanical design is the knee. This joint was studied to
reproduce the human articulation: made up with two circular supports, the joint
is fastened by five sinews, as shown in figure 2.b [6].

The robot has a total of twelve active degrees of freedom disposed as in
most of the modern biped robots: two in the ankle, one in the knee and three
in the hip of each leg. The range of motion of each joint is similar to that
of humans during normal walking. Joint torques are provided by servo motors
disposed in the upper part of the robot. In this way, we can obtain a very light
leg, even with 6 actuated degrees of freedom. The transmission is performed
by a simple system of cables and levers. The servo motors are equipped with
a spring and a damper to permit the joint stiffness control, which is described
in the following paragraphs. The biped robot built with these features is 90
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a. b.

Fig. 2. (a) The foot under development. (b) The knee articulation, with five tendons
and two circular supports

cm high, has twelve active and four passive degrees of freedom and weight less
then 5 kg. We managed to make it that light thanks to the particular design,
which characterizes this robot; as a matter of facts, the prototype is made with
pieces cut out from a polycarbonate sheet, linked by plastic and carbon-fibre
parts.

In the following paragraph we present the elastic actuator and control algo-
rithm developed for the biped. First, we describe the control basic laws, then
a more complete algorithm with acceleration feedback. The fourth paragraph
introduce the simulations made on a computer model of the biped, showing the
advantages of the elastic regulator respect to a classical position control.

2 The Elastic Actuator

The actuator is composed by a servo motor (we used big servos with 24 kg
cm torque), a torsional spring and a damper. The resulting assembly is small,
lightweight and simple, as we use a single torsional spring.

Using a spring between the motor and the joint let us have a precise force
feedback simply measuring the deflection of the spring. Also, the resulting actu-
ator has a good shock tolerance thanks to the damper. Similar actuators, with a
DC motor and a spring, have been successfully used in biped robotics by Pratt
et al. [7] and Yamaguchi and Takanishi [8].

The choice of the servos and the materials was made basically on cheap and
off-the-shelf components. The main characteristic of this actuator is that the
joint stiffness is not infinite, as it is in servo motors, and it can be changed
in real time despite the constant stiffness of the spring. This has been achieved
through a right choice of spring-damper characteristics and thanks to an intuitive
control algorithm. We must underline here that as joint stiffness we consider kg

kg =
Me

ε
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where Me is the external load and ε is the position error. A first prototype of
our actuator was composed by two motors and two springs, working as agonist
and antagonist muscles in humans. This let us vary the joint stiffness even when
no external load is acting, pre-tensioning the joint. With only one motor and
one spring, the initial stiffness of the joint is fixed by the spring constant. This
because the motor needs some time to tension the spring and counteract the
external torque. Also, in this conditions, the presence of the damper avoid high
initial errors due to rapidly varying loads.

The damping factor can be chosen constant, at its critical value (ξ = 1){
wn =

√
kg/I

d = 2ξwnI;
(1)

or can be varied during motion, in order to save motor torque and make the
system faster. In the following paragraph we present the first alternative.

3 The Control Architecture

Regarding the low-level control of the motor, the spring-damper actuator can be
used in a torque control loop: the controller assigns the torque to be delivered
and, measuring the spring deflection, the actuator performs the task. A way
to assign joint torques is the Virtual Model Control developed by J. Pratt et
al. [9],[7]. In this approach, the controller set the actuator torques using the
simulation results of a virtual mechanical component: like a spring, damper or
any other mechanical device. In this way, the input torque can be computed
intuitively shifting from virtual to real actuators.

In other classical approaches [10] the calculation of the joint torques is based
on the dynamic model of the robot, that in many cases is complicated and
imprecise. Indeed the biped robot can be formalized with a multi input multi
output (MIMO) non linear system, that sometimes presents also time variant
dynamical behavior. In these conditions a classical PID (Proportional Integral
Derivative) controller is not suitable and more complex control strategies are
needed. On the other hand, if we apply only a simple position controller it
remains to solve how to control the joint stiffness.

To solve these issues we developed a simple algorithm that can control the
joint stiffness and position providing the worth torque with a simple position con-
trol paradigm; no inverse-dynamic problem has to be solved for the positioning
task. Actually, this kind of control is an implementation of the Equilibrium Point
(EP) hypothesis as described by Feldman [11] [12] [13] regarding the control of
the movements in humans. This theory suggests that the segmental reflexes
together, with the muscolo-skeletal system, behave like a spring. Movement is
achieved just by moving the equilibrium position of that spring. Virtually it is
like pushing, or pulling, on one end and the other end will follow. And this is
actually what happens with our actuators and the control law we adopted. Also,
we developed a more articulated algorithm, with acceleration and velocity feed-
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back. This can provide an estimation of the external torque acting on the link,
and modify the joint stiffness accordingly.

These algorithms are described in detail in the next two sections. In the first
of these, the basic control law is presented, while in the second, the more complex
algorithm with acceleration feedback is illustrated.

3.1 The Simplest Control Model: An Implementation of the EP
Hypothesis

The basic control algorithm is very simple, and very close to a classical model
of the Equilibrium Point hypothesis; it needs the reference position ϕ̄ and the
joint stiffness kg as inputs, and gives in output the motor position α0. The only
state information needed is the actual joint position, that must be measured and
feedback to the regulator. We may remind that the difference between the actual
position and the motor one is covered by the spring deflection. The control law
is expressed by equation (2):

α0 =
kg

k
(ϕ̄ − ϕ) + ϕ (2)

where k represent the spring stiffness, ϕ and ϕ the actual and desired angular
position respectively. The result is that a virtual spring with kg stiffness is acting
between the reference angle and the actual position. As a matter of facts, the
finite joint stiffness betokens the presence of an error and one may define the
time by which the desired position must be reached, accordingly with the joint
stiffness. If this is very high, the error will be small, and the actual trajectory
very close to the assigned one; this means that in presence of a step in ϕ, high
acceleration peaks can be generated. If the joint stiffness is small, one may expect
relevant differences in the reference and actual trajectories, as the inertia and
the damping oppose to fast movements. The static error ε depends anyway on
the external load (Text), as

ε =
Text

kg
(3)

Equation (3) represents also a way to determine a proper joint stiffness,
deciding the maximum error tolerance and estimating the external maximum
load. Note that kg can be changed in real time, accordingly to the precision
needed in critical phases of the motion.

To define the reference trajectory we used a step function filtered by a second
order filter defined by a suited time constant T. In this way we can characterize
the reference pattern with a single parameter.

To maintain the controller and the mechanical structure simple, the damping
factor is set to a constant value that keep the system at the critical damping, as
in equation (1).

We simulated the control of a simple 1-dof pendulum, and the results confirm
the theoretical approach. In the simulation, gravity and varying external loads
were included. Also friction was included to test the robustness of the algorithm.
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a. b.

Fig. 3. (a) The link rotation and the motor position referred to the commanded angle.
We can see that the actual angle approaches the reference accordingly to the set stiffness
and external load (”static” angle). (b) The acceleration pattern presents two peaks,
characteristic of damped systems. The change at about t=1.5 s is due to the limit on
servo maximum torque

The system parameters are:

m = 1.2 kg; l = 0.3 m; Ig = 7.35 · 10−2 kg m2; k = 6 Nm/rad; kg = 10 Nm/rad

where l is the distance between the center of mass and the joint axis.
Fig. 3.a shows the behavior of the system: the commanded angle goes from

zero to 0.3 rad at 0.1 sec and from 0.3 rad to -0.3 rad at 1.2 sec with a constant
time T=0.08 s. Here, only gravity is acting. The actual joint angle and the motor
position are also showed. With ”static angle”, we denote the position that the
joint would have if the link inertia was zero and the damper was not present.
To keep the figure clear the chosen stiffness is quite weak the error is about 0.1
rad only due to gravity. Looking at the motor position, we can notice that it
is always opposite to the angle respect to the reference. This because here the
spring stiffness is chosen lower than the joint stiffness. In this way the motor has
to rotate more, but the system is less sensitive to motor position error. At about
1.4 sec., the motor rotation changes velocity due to servo maximum torque limit.
In every simulation, also servo speed limitations were included.

Considering the resulting rotational acceleration, we can notice in fig.3.b that
we have only two peaks, acceleration and deceleration with no oscillation. This
pattern, typical of damped systems, is particularly useful when it is needed to
exploit the natural dynamics of multi-link systems. For instance, when starting
a step, the acceleration of the thigh can be used to bend the knee, as in pas-
sive dynamic walkers [14] [15], or, before foot-fall, the deceleration of the swing
motion can be exploited to straight the leg, as in passive lower-limb prosthesis.

To figure out the influence of rapidly external loads on the system behavior,
we simulated a positioning task under step-varying external torque. Figure 4
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Fig. 4. The system behavior under rapidly-varying external torques. These can be seen
in the ”static angle” changing accordingly to the sinusoidal and step components of
the load

shows the system under the action of an external load composed by a sinusoidal
and constant action: at 0.1 s there is a positive step; at 1 s a negative one. Here
the stiffness was highly increased, as a keep-position task was to be performed:

k = 10Nm/rad; kg = 50Nm/rad

Similar simulations have been run including a variable reference angle and
friction at the joint.

Thanks to this simple control law, we do not need to solve any inverse dy-
namic problem, but just decide the joint stiffness - using for example equation
(3) - and define the suited reference pattern.

The following section describes a more complete algorithm that can automat-
ically adapts joint stiffness to the external load in case that this dimensioning is
not accurate. Regarding to the system, the only information needed is its inertia,
or its average value for a multi-link system. In the next section, it will be also
shown that the controller behaves robustly respect to inertia misestimation.

3.2 The Control Law with Acceleration Feedback

Generally, in trajectory planning, not only the position is constrained, but also
the velocity and acceleration must respect some limitations. This is especially
important when we want to exploit the natural dynamic of the multi-body sys-
tem; as we sketched above , the acceleration of the thigh can be used to bend the
knee when starting the step [14] or to straight it before the foot-fall, as in passive
leg prosthesis. Also velocity and acceleration limitations are needed where the
inertial load due to the movement of one part can interfere with the motion of
the rest of the robot. This is particularly relevant in bipedal walking.
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To consider acceleration constrains, we included in our controller a sort of
impedance control. By this term, we refer to the fact that the algorithm tracks
the delivered torque and studies the resulting acceleration, creating a function
relating these two quantities. In this way, we can create a simple dynamic model
of a multi-body system without solving any inverse dynamic problem. The model
can also get a good estimate of the external load acting on the joint; this can
include the sole gravity or the interaction force with another links.

That can be obtained using, in the control loop, the equations:

T i−1
ext = −k · (αi−1

0 − ϕi−1) + I · ϕ̈i−1 + d · ϕ̇i−1 (4)

where d is the damping factor (see equation (1)), α0 is obtained from eq. (2),
I is the inertia and k the spring stiffness. The approximation we make is that
between the instants i-1 and i of the control loop the external load remains
constant

T i−1
ext = T i

ext

Given the values of k,d,I, the position of the motor α0 and the estimation of
Text, the acceleration can be foreseen as:

Ai =
k · (αi

0 − ϕi) + T i−1
ext − d · ϕ̇i

I
(5)

This is the way in which we implement a kind of impedance control: if the
acceleration (system output) in the next step is different from the foreseen one,
given the calculated α0 (system input), we infer that a different load is acting
(system model has changed) and thus the motor position α0 is corrected accord-
ingly. In some way this is also how we sample object properties in real word; for
instance, to understand if a bin is empty or not we lift it and according to the
resulting motion, we estimate the mass. We do the same to evaluate a spring
stiffness, for example. In a positioning task, we make this sample-evaluation-
correction every instant. The controller we developed perform this simple check
at any iteration, modifying in real time the system model.

The simulations on a single joint brought to interesting results; with the same
system as before:

m = 1.2kg; l = 0.3m; Ig = 7.35 · 10−2kgm2; k = 10Nm/rad; kg = 50Nm/rad

we could perform the motion evaluating the acceleration and the external load.
In fig. 5 the results are shown with and without motor torque limitation. Here
the external load is only the gravitational one. We can notice the effect of torque
limit on the acceleration pattern.

As it is possible to see in fig. 5.c the characteristic is similar to the hu-
man electro-myographic activity, composed by there phases: acceleration-pause-
deceleration [1], [16], and suitable for exploiting the natural dynamic of the links,
i.e. in leg swinging as pointed out before.

From figures 5.e and .f we can also notice that the system perform a pretty
good estimation of the external load acting on the link.
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a b

c d

e f

Fig. 5. (a),(c),(e) show respectively the angles, the acceleration and its evaluation, Text

and its estimation when no motor torque limitation is considered. As we can see, the
estimate is in good accordance with the real value. (b),(d),(f) show the same graph
when a torque limitation is considered

The controller can also perform a path monitoring on the acceleration; as
a matter of facts, if the joint stiffness we imposed is, for example, too high
for the load applied or the reference angle changes too quickly, the controller
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Fig. 6. The algorithm can limit the acceleration acting on the joint stiffness without
compromising the final positioning. This within few lines of calculations

decrease the joint stiffness during the motion to prevent too high accelerations.
This is done simply using the calculated acceleration value for the incoming
iteration (eq. 5). If with the imposed stiffness the acceleration Ai is too high, kg

is changed in order to have Ai = Alimit. In this very simple way, the real value
of the acceleration is kept under its maximum value.

Setting the right joint stiffness can be guided by equation (3) or with a
trial-and-error procedure. For example, a learning algorithm could be used, not
only to determine the kg value, but also the time constant of the reference
trajectory. The choice of this two parameters as inputs is quite relevant: as a
matter of facts, these two quantities can greatly influence the joint behavior
without compromising the final positioning.

The only information the controller needs about the system is its inertia;
in multi-link systems it can be approximated with a constant average value
computed on all the links, or it can be calculated during the motion. In any
case, the controller seems to be quite robust respect to inertia uncertainties,
showing no relevant changes even for errors of about 30% (see fig. 7). As a
matter of facts, the difference in inertia load is considered by the controller
as an additional external torque. Regarding the damping, equation 1 can be
rewritten as:

d = 2ξ · √kgI (6)

This means that the damping factor is also proportional to the square root
of inertia errors: while a too high inertia make the system over-damped, an
underestimation can let the system have some oscillations. Anyway, the error
in the inertia must be very high (such as 50%) to see noticeable effect on the
damping.

In the external torque estimation, we can notice the effect of wrong iner-
tia input in the controller: for instance, if the real inertia value is lower, the
controller acts as an additional external load is helping rotation during positive
accelerations (see fig.7). In this way, the system is ”automatically compensated”.
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Overestimated Inertia Underestimated Inertia

Fig. 7. As we can see, an error of 30% in inertia value does not compromise the posi-
tioning; it is considered as an external additional load. If the computed inertia is lower
than the real one, for example, when the system is accelerating, the algorithm interpret
the too small acceleration (system response) as an external load that is braking the
motion. On the other hand, when the computed inertia is higher than the real one,
the system is over-accelerated, and a virtual additional positive torque is considered
acting

3.3 The Influence of Damping on the Control

The advantage of choosing joint stiffness and reference angle curve as parameters
is that we can change the behaviour of the system without the risk to hamper
the final positioning. For instance, the joint stiffness can be increased as the
error lessens, for a fine placement, or the reference curve can be chosen more
or less sharply changing to regulate inertia forces. To avoid oscillations along
the assigned angle, the damping factor has been fixed to the critical value. This
means that the relative damping is kept at unity during the whole motion; the
drawback of this choice is that quite a relevant part of the motor torque is ad-
sorbed by the damper even when no external load is acting. Thus, an alternative
could be to use a relative damping less then one during the motion, which must
be braked when the error approaches zero. A solution is then to have two values
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of the damping: low for motion, and high for braking; otherwise the damping
should be changed continuously.

In the algorithm both the solutions could be implemented successfully, and
with the right choice of the damping values, oscillations can be avoided. In this
way, we can save a relevant quantity of motor torque, especially when starting
the motion. The drawback of this choice is that the system is more liable to
rapidly-changing external loads when the damping value is low.

4 The Simulation on the Biped

The spring-reactive control has been implemented on our biped in a computer
simulation. The robot model is shown in fig.8. As a first test, the robot had
to preserve the equilibrium despite external disturbances. To run this test we
implemented a simplified model; as a matter of facts, 6 dof are enough to perform
the task; thus we only actuate two dof in the ankle (pitch and roll) and one in
the hip (yaw) for each leg.

Figures 9 shows the external disturbances applied on the robot. The joint
stiffness is set according to equation (3), where ε is the maximum error and
Text is the corresponding gravitational load. The value of inertia is calculated
focusing on the resulting damping more than on the real value, that should be
computed along the closed kinematic chain formed by the biped. Thus, for the
ankle, we figure out the inertia of the robot considering the two feet coincident.
Given the value of this inertia I, we evaluate the needed total damping factor d.
As in the feet two dampers in parallel are present, we split the inertia so that
the sum of the two dampers equal the total damping needed. Regarding the hip,

Fig. 8. The robot model in the computer simulation
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Fig. 9. The external disturbances applied to the robot, forces and torque

Fig. 10. The angular position in the two degrees of freedom of the ankle: the distur-
bances are absorbed and the robot returns in its initial position

we proceed in the same way, neglecting the leg beneath the joint for the inertia
computation.

The results are shown in fig.10: we can notice that, as the disturbance is
applied, a position error appears, as the actual angle differs from the reference
position zero. The dotted line shows the motor rotation, that counteracts the
disturbance and brings the joint back to the reference. In this way the robot
is able to ”react” to external loads, admitting a positioning error in order to
preserve the whole balance.

Figure 11 shows the advantages of our regulator respect to a classical po-
sition control: the latter is unable to absorb and react to force disturbances,
making the robot rigidly fall down. The elastic control instead, betokening the
presence of a position error, can preserve the robot from falling down absorbing
the disturbance.



312 U. Scarfogliero, M. Folgheraiter, and G. Gini

Fig. 11. The robot controlled with a classical position control (above) and with elastic
control (below) under the same disturbances. The advantages of this kind of regulator
are already noticeable at low level control

5 Conclusions

In this paper we presented an anthropomorphic biped robot made with inno-
vative features in mechanical design and control architecture. Regarding the
actuation system, we designed a motor device equipped with a torsional spring
and a damper to mimic the elastic properties of muscles and tendons. This al-
lows to have a good shock tolerance and, from the control point of view, to
estimate the external load measuring the spring deflection. Also, a method was
developed to preserve the possibility of position control even with variable joint
stiffness. This aspect is fundamental in biped robotics, not only to exploit the
natural dynamics of the legs, but also to face with impacts occurring at every
step. With position and velocity feedback - present in musculoskeletal system
through Golgi tendon organs and muscle spindles - we can perform a fine po-
sitioning task even without any a-priori knowledge of the external load. As a
matter of facts, our control law is an implementation to robotics of the Equi-
librium Point Hypothesis, as described by Feldman [11] [12] [13]. Indeed, our
regulator perform a movement acting on the equilibrium point of the spring;
using few lines of calculations, the joint stiffness can be changed in real-time,
despite the constant stiffness of the spring. In addition, evaluating the accelera-
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tion, we can adopt a sort of impedance control: as the reference angle is imposed
by a high level controller without any knowledge on the external load, the low
level regulator can modify the joint stiffness according to the external action,
avoiding, for example, too high accelerations. These arguments seem to weaken
the main criticisms to Feldman lambda model; according to those criticisms
it is fundamental to know the dynamics of the load to decide the equilibrium
point motion. As our results showed, we can perform the movement without
solving any inverse dynamic problem and, in order to face with changing ex-
ternal loads, we can act both on the equilibrium point and the joint stiffness,
despite the a-priori defined reference angle and the constant stiffness of the
system.
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Abstract. Biologically inspired robotics offers the promise of future au-
tonomous devices that can perform significant tasks while coping with
noisy, real-world environments. In order to survive for long periods we be-
lieve a developmental approach to learning is required and we are investi-
gating the design of such systems inspired by results from developmental
psychology. Developmental learning takes place in the context of an epi-
genetic framework that allows environmental and internal constraints to
shape increasing competence and the gradual consolidation of control,
coordination and skill. In this paper we describe the use of novelty and
habituation as the motivation mechanism for a sensory-motor learning
process. In our system, a biologically plausible habituation model is uti-
lized and the effect of parameters such as habituation rate and recovery
rate on the learning/development process is studied. We concentrate on
the very early stages of development in this work. The learning process
is based on a topological mapping structure which has several attractive
features for sensory-motor learning. The motivation model was imple-
mented and tested through a series of experiments on a working robot
system with proprioceptive and contact sensing. Stimulated by novelty,
the robot explored its egocentric space and learned to coordinate motor
acts with sensory feedback. Experimental results and analysis are given
for different parameter configurations, proprioceptive encoding schemes,
and stimulus habituation schedules.

1 Introduction — The Developmental Framework

In recent years, there has been an increasing interest in biologically inspired
robotics. The main motivations for this trend are twofold: developing new and
more efficient learning and control algorithms for robots in unstructured and
dynamic environments on the one hand, and testing, verifying and understand-
ing mechanisms from neuroscience, psychology and related biological areas on
the other. Developmental robotics is a multidisciplinary research area which
is greatly inspired by studies of infant cognitive development, especially the
staged growth of competence by shaping learning via the constraints in both
internal sensory-motor systems, and the external environment. Motivated by
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the wealth of data from the developmental psychology literature, we are explor-
ing a new approach strongly based on developmental learning. We believe that
robotics may benefit considerably by taking account of this rich source of data
and concepts. The newborn human infant faces a formidable learning task and
yet advances from undirected, uncoordinated, apparently random behaviour to
eventual skilled control of motor and sensory systems that support goal-directed
action and increasing levels of competence. This is the kind of scenario that
faces future domestic robots and we need to understand how some of the in-
fant’s learning behaviour might be reproduced.

A major inspiration for the developmental approach has been the work of
the great psychologist, Jean Piaget [18] and we recognise Piaget’s emphasis on
the importance of sensory-motor interaction and staged competence learning.
Others, such as Jerome Bruner, have developed Piaget’s ideas further, suggesting
mechanisms that could explain the relation of symbols to motor acts, especially
concerning the manipulation of objects and interpretation of observations [7].

The first year of life is a period of enormous growth and various milestones in
development are recognised. Considering just motor behaviour, newborn infants
have little control over their limbs and produce uncoordinated and often ballis-
tic actions, but over the first 12 months, control of the head and eyes is gained
first, then follows visually guided reaching and grasping, and then locomotion is
mastered. There are many aspects here that can be studied, but we concentrate
on the sensory-motor systems that deal with local, egocentric space. In partic-
ular, our programme is investigating the developmental processes, constraints,
and mechanisms needed to learn to control and coordinate a hand/eye system
in order to provide mastery for reaching and grasping objects. We believe it is
necessary to start from the earliest levels of development because early experi-
ences and structures are likely to determine the path and form of subsequent
growth in ways that may be crucial.

This paper focuses on novelty and habituation as motivational drivers for
very early sensory-motor learning tasks. In our system, a biologically plausible
habituation model is utilized and the effects of parameters of the model on the
development process are studied.

2 An Experimental Developmental Learning System

In order to investigate embedded developmental learning algorithms we have
built a laboratory robot system with two industrial quality manipulator arms
and a motorised pan/tilt head carrying a colour CCD camera. Each arm can
move within 6 degrees of freedom and each is fitted with a two-fingered gripper.
The whole system is controlled by a PC running XP, and a SUN Ultra Sparc
10 workstation. The PC is responsible for controlling the two manipulators,
grippers, and pan/tilt head, and processing images from the CCD camera and
other sensory information. The control program is written in C++. The high
level mapping and learning processes are realized in the SUN workstation and
implemented in JAVA. The two machines communicate via TCP.
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Fig. 1. System set up

The specific anatomy of embedded systems has important implications [17]
and the configuration of our system is similar to the general spatial arrangement
of an infant’s arms and head. The arms are mounted, spaced apart, on a vertical
backplane and operate in the horizontal plane, working a few centimetres above
a work surface, while the “eye” (the colour imaging camera) is mounted above
and looks down on the work area. Figure 1 shows the general configuration of
the system.

We define a lateral area as a “rest” position for each arm, and define a central
area between the two robot arms as the “mouth” area. Similar to newborn baby
reflexes, the robot system has two given reflexes i.e. the system knows how to
move its arms to the “mouth” from anywhere if it gets a suitable stimulus, and
a similar reflex causes movement to return to the “rest” position. Both “mouth”
and “rest” positions are small areas rather than single points, so at the very be-
ginning, by moving between “mouth” and “rest” positions, the system already
covers certain working areas to practice gaining sensory-motor skills. Some form
of basic reflexes are always necessary to initiate activity. A newborn baby al-
ready has some reflexes such as sucking, arm/leg extending, and hand-to-mouth
reflexes. It is believed these reflexes form a base for later skill development.

Various stimuli can be used to drive the system to explore the environment
and gain hand sensory-motor mapping and eye/hand coordination skills. These
include stimuli from vision (colour, shape, movement), contact sensors on arms
and hands, and others such as sound, etc. We treat any newly discovered area
as stimulating, thus the “mouth” and “rest” areas are initially unexplored and
so become the novel stimuli that drives the robot learning process. We believe
that the mapping between the hand/arm motors and proprioceptive feedback
should be developed early, before introducing vision to further enrich the hand
sensory-motor mapping and start eye/hand coordination development. We are
investigating the optimum time for introducing vision into the learning process.
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Fig. 2. Forearm and upperarm of one arm

The robot arms have proprietary controllers and can be driven by select-
ing commands in terms of various coordinate systems. For example, the six
revolute joints can be driven directly to desired angles or the location of the
end-effector can be moved to a desired location in cartesian space. The arm con-
trollers perform any necessary kinematic computations to convert spatial tran-
sitions into motor actions. In the present experiments only two joints are used,
the others being held fixed, so that the arms each operate as a two-link mech-
anism consisting of “forearm” and “upperarm” and sweep horizontally across
the work area. The plan view of this arrangement for one arm is shown in
figure 2.

Normally the arm end-points each carry an electrically driven two-finger grip-
per, however, for the present experiments we fitted one arm with a simple probe
consisting of a 10mm rod containing a small proximity sensor. This sensor faces
downwards so that, as the arm sweeps across the work surface, any objects passed
underneath will be detected. Normally, small objects will not be disturbed but
if an object is taller than the arm/table gap then it may be swept out of the
environment during arm action.

3 Novelty and Habituation

At each stage of learning, novelty and habituation play an important role in
driving the learning process. Novelty refers to new or particularly salient sen-
sory stimuli, while habituation is defined as a decrease in the strength of a
behavioural response to repeated stimulations. A habituated stimulus may be
able to evoke a further response after the presentation of an intervening novel
stimulus. Novelty and habituation mechanisms can help a system to explore new
places/events while monitoring the current status and therefore the system can
glean experience over its entire environment.

In our system we used a biologically plausible habituation model [19] which
describes how excitation, y, varies with time:
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τ
dy(t)
dt

= α[y0 − y(t)] − S(t) (1)

where y0 is the original value of y, τ and α are time constants governing the rate
of habituation and recovery, and S(t) represents the external stimulus.

Let S(t) be a positive constant, denoted as S. Then, the solution for equation 1
is:

y(t) =
{

y0 − S
α [1 − e−αt/τ ], if S �= 0 (a)

y0 − (y0 − y1)e−αt/τ , if S = 0 (b)
(2)

and in recurrent form:

y(t + 1) = y(t) +
α

τ
[y0 − y(t)] − s

τ

where y1 is the value when the stimulus is withdrawn. Figure 3 shows some
values for this habituation model.

There are three phases in our implementation: a habituation phase (S �= 0),
a forbidden phase and a recovery phase (S = 0). The implementation is based
on a hierarchical mapping structure consisting of perceptual fields with differ-
ent field sizes and overlaps. During the habituation phase, the strength of a
field’s response to repeated stimulations decreases. When the strength is below
a threshold, the field is not considered in the attention selection process, i.e. the
field is forbidden; After a certain period, the strength of this field’s response to
stimulus may be able to recover to a certain level, and the field may be selected
by the attention selection process. The strength of a field’s excitation is calcu-
lated using equation 2 based on whether the field is in a habituation phase or
recovery phase.
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Fig. 3. The habituation model
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4 The Sensory-Motor Coordination Problem

In this paper we examine a very early problem of motor control: the sensory-
motor control of the limbs. We gain inspiration and insight from the infant’s
use of his/her arms during the first 3 months of life. Initially, it seems there
is no purpose or pattern to motor acts, but actually the neonate displays very
considerable learning skills in the first 3 months: from spontaneous, apparently
random movements of the limbs the infant gradually gains control of the pa-
rameters and coordinates sensory and motor signals to produce purposive acts
in egocentric space. Various changes in behaviour can be discerned such as (1)
“blind groping” arm actions, (2) pushing objects out of the local environment,
(3) touching and tracing objects. During these stages the local egocentric space
becomes assimilated into the infant’s awareness and forms a substrate for future
cross-modal skilled behaviours. This development involves an essential correla-
tion between sensory and motor spaces. Notice that this growth stage is prior or
concurrent with visual development and so, in the experiments reported here,
we do not involve the eye system. Also, for experimental simplicity, we use only
one arm.

4.1 The Motor System

A two-section limb requires a motor system that can drive each section indepen-
dently. A muscle pair may be required to actuate each degree of freedom, i.e.
extensors and flexors, but a single motor parameter, Mi, is sufficient to define
the overall applied drive strength. We assume that any underlying neuronal or
engineering implementation can be abstracted into such parameters, where zero
represents no actuation and increasing values represent correspondingly increas-
ing drive strength in positive or negative directions. As we are operating in two
dimensions, two motor parameters are required, one for each limb section: M1

and M2. It is important to recognise Bernstein’s valuable contribution that there
can be no one-to-one relation between the motor cortex neurons and individual
muscle fibres [3]. However, we can use our abstraction to capture an overall rep-
resentation of output motor activity. In this study, we operate the arms at a slow
rate and so do not need to take account of effects due to gravity or dynamics.

4.2 Proprioception

The sensing possibilities for a limb include internal proprioception sensors and
exterior tactile or contact sensors. Proprioception provides feedback on the
sensed position of the limb in space but, in animals, the actual mechanisms
and the nature of the variables sensed are not entirely known. There are two
main possibilities: the angles of specific joints may be sensed, or the position
of the limb end-point may be sensed. The former is technically simple, being
directly derived from a local mechanical change, while the latter, being more
global, requires some form of computation to derive the end-point location, as,
without other external sensing such as vision, this can not be sensed directly. An
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attractive variation would be to relate the hands or arm end-points to the body
centre line. This body-centred encoding would be appropriate for a “mouth-
centred” space in accordance with early egocentric spatial behaviour. In this
case, the limb end-points are encoded in terms of distance away and angle from
the body centre.

There is one other notable spatial encoding: a Cartesian frame where the
orthogonal coordinates are lateral distance (left and right) and distance from
the body (near and far). The signals for this case are simply (x, y) values for the
position of the end-points in a rectangular space. This encoding, referred to as
Cartesian encoding, seems the most unlikely for a low-level biological system,
however we include it due to its importance in human spatial reasoning [14].

Before vision comes into play, it is difficult to see how such useful but complex
feedback as given by the three latter encodings could be generated and calibrated
for local space. The dependency on trigonometrical relations and limb lengths
at a time when the limbs are growing significantly makes it unlikely that these
codings could be phylogenetically evolved. Only the joint angle scheme could
be effective immediately but the others may need to develop through growth
processes. Recent research [5] on the hind limbs of adult cats has discovered
that both joint angle and end-point encodings can coexist, with some neu-
ronal groups giving individual joint angle outputs while other neurons give foot
position encodings independently of limb geometry. We investigate all four sys-
tems as candidate proprioception signals. For each encoding scheme we consider
the signals, S1 and S2:

1. Joint Angle encoding.
S1 = f(θ1) and S2 = f(θ2), where the θ are the joint angles between the
limb sections and f is a near linear or at least monotonic function. θ1 is the
angle between the upperarm and the body baseline (a fixed datum in the
workspace) and θ2 is the angle between the upperarm and the axis of the
forearm.

2. Shoulder (or end-point) encoding.
This gives the length and angle of the limb axis from shoulder to end-point:

S1 =
√

l21 + l22 + 2l1l2 cos θ2

and
S2 = θ1 − arctan

l2 sin θ2

l1 + l2 cos θ2
,

where l1 and l2 are the lengths of the upperarm and forearm respectively.
We note that the length of the complete limb system, i.e. shoulder to

end-point, varies only with θ2.
We also note that if θ2 had been measured in absolute terms, i.e. with

respect to a body datum like θ1, then the encoding formulation would be
less convenient and more obscure:

S1 =
√

(l1 cos θ1 + l2 cos θ2)2 + (l1 sin θ1 + l2 sin θ2)2



322 Q. Meng and M.H. Lee

and
S2 = arctan

l1 sin θ1 + l2 sin θ2

l1 cos θ1 + l2 cos θ2
.

3. Body-Centred encoding.
This is a measure of the end-point distance and angle from the body centre.
Shoulder encoding effectively records the vector from shoulder to hand, while
this encoding measures the vector from body to hand. Accordingly, we shift
the shoulder vector given above (S′

1 and S′
2) by the distance Base which is

the separation distance between the shoulder and the body centre line:

S1 =
√

(S′
1)2 + Base2 − 2BaseS′

1 cos S′
2

and

S2 = arctan
S′

1 sin S′
2

Base − S′
1 cos S′

2
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4. Cartesian encoding.
S1 = x and S2 = y, where (x, y) is the location of the arm end-point in two-
dimensional rectangular space. The actual orientation of the space is not
important but for convenience the origin can be placed at the body centre
point.

Figure 4 shows the relationship between the Joint and Cartesian encoding
systems. We see that when the arm moves along a straight line in joint space,
the arm end-path in Cartesian space is a curve, and the distortion between the
maps changes considerably for different areas of the workspace.

5 Mappings as a Computational Substrate for
Sensory-Motor Learning

The learning process is based on a hierarchical mapping structure which consists
of fields of different sizes and overlaps at different mapping levels. Each field
contains local information including sensory data and related motor movement
data, statistics on activity levels and stimuli information including the time of
stimuli appearance/disappearance. Fields may be merged into larger areas so
that the system can become habituated to one area and then be attracted by
stimuli from other unexplored areas to probe these and gain experience there.

Our maps consist of two-dimensional sheets of identical elements. Each ele-
ment is a circular patch of receptive area known as a field. The fields are regularly
spaced, with their centres arranged on a triangular grid. We use two variables,
I, J , to reference locations on any given map; these simply define a point on
the two-dimensional surface — they do not have any intrinsic relation with any
external space.

Two parameters define a map structure: field size and inter-field spacing.
These parameters determine two measures of coverage: degree of overlap (as a
proportion of area covered by only one field against area covered by more than
one field) and the coverage density (in terms of field area per unit surface area).

Every field can hold associated variables, as follows:

1. Stimulus value Fs, e.g. colour value, shape value, contact value.
2. Excitation level Fe, This is the strength of stimulation that a field has

received.
3. Frequency counter Fu, This records how often the field has been used (i.e.

accessed or visited).
4. Motor values This is a way of recording the motor parameters that were in

force when this field was stimulated. It builds the cross link between sensory
space and motor space, which can be reused for later movement planning in
sensory space and further conversion to motor space.

The motor information within fields is effective for local areas. During the
planning phase, for a target sensory field which the arm needs to move to, if
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the field has a cross motor link, then the motor values are utilized for driving
the movement. Otherwise a local weighted regression approach is applied to
generate the motor values by using any local field neighbours which have cross
motor links. The motors are driven based on the estimated values which may or
may not achieve the desired target field depending on how far the neighbours
are from the target field and in which part of workspace the target field falls.
Some areas of the workspace have more distortion than others, see figure 4 for
the distortion changes across the whole workspace between Cartesian sensory
encoding and joint space. After the movement, if the sensory feedback shows that
the movement is not accurate enough, then another sensory-motor cross link is
generated based on the motor values used and the actual sensory feedback. The
details of the planning process will be discussed in another paper.

6 Experimental Procedure

The software implemented for the learning system is based on a set of four
modules which operate consecutively, and in a cyclic loop. The modules are:

Action Selection: This module determines which motors should be executed.
For a single limb system, this is the process of setting values for M1 and M2.

Motor Driver: This module executes an action based on the supplied motor
values. For non-zero values of M the arm segments are set moving at constant
speed and continue until either they reach their maximum extent or a sensory
interrupt is raised. The ratio between the values of M1 and M2 determines the
trajectory that the arm will take during an action.

Stimulus Processing: Upon sensory interrupt or at the completion of an
action this module examines the position of the arm and returns values for
proprioception, i.e. S1 and S2, representing the sense for the current position. If
the action was terminated by a contact event then the contact value, SC , is also
returned.

Map Processing: Using S1 and S2 as values for I, J , this module accesses
the map and identifies the set of all fields that cover the point addressed by S1

and S2. A field selector process is then used to chose a single key field, F ,
from the set. We use a nearest neighbour algorithm to select the key field. Any
stimulus value is then entered into the field, Fs = SC , and the excitation level
is updated. Another field variable, the usage counter Fu, records the frequency
that fields are visited, and this is then incremented and tested. If this was the
first time that field had been used then an excitation level is set, otherwise, the
excitation value is updated according to the function in equation 2. If this field
has not yet received an entry for motor values, then the cross modal link is set
up by entering the current motor values.

A motivational component is necessary to drive learning and this is imple-
mented in the Attention Selection procedure. This module directs the focus of
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attention based on the levels of stimulation received from different sources. There
is evidence from infant studies that novelty is a strong motivational stimulus. We
start with a very simple novelty function to direct attention and to provide the
motivational driver for sensory-motor learning. Novel stimuli get high excitation
levels and are thus given high priority for attention. Thus, if a sensed value at a
field remains unchanged then there is no increase in excitation, but upon change
the excitation level is incremented, as described above. We use a habituation
mechanism to provide decay functions and reduce overall excitation levels. The
field with the highest level of excitation becomes the candidate target for the next
focus of attention. Using map data from both this target field and the current
location field a trajectory can be estimated and motor values are then computed
and passed to Action Selection. In this way, motor acts are directed towards
the most stimulating experiences in an attempt to learn more about them.

By investigation we can logically determine the various options available
and/or appropriate for a learning agent. If no prior experience is available then
there are no grounds for selecting any particular ratio between M1 and M2 and
therefore setting both to a high positive value is the natural choice for Action
Selection. We assume that a rest position exists (equivalent to an “origin”) and
the result of driving the motors “full on” from the rest position brings the hand
to the body centre-line, in a position equivalent to the mouth. We also assume a
reflex in the Motor Driver procedure that, providing there is no other activity
specified, returns the arm to the rest position after any action.

The expected behaviour that we anticipate from experiments is initially spon-
taneous, apparently random movements of the limbs, followed by more purpo-
sive “exploratory” movements, and then directed action towards contact with
objects. In particular, we expect to see the following stages:

(1) “blind groping” arm actions,
(2) unaware pushing objects out of the local environment,
(3) stopping movement upon contact with objects,
(4) repeated cycles of contact and movement,
(5) directed touching of objects and tracing out sequences of objects.

7 Experiments

In our experiments, several variables were considered: the state of the environ-
ment, the type of proprioception, the field sizes, and the habituation parameters.

The first factor is the environment and there are three possible cases:

1. No objects present
2. Some objects present, no contact sensing
3. Some objects present, contact sensing on

Noting that case 2 subsumes case 1, we can ignore case 1.
The second variable to be examined is the encoding of the proprioceptive

sensing, S1 and S2. We can arrange that these signals are computed from one of
the four schemes described above.
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Another factor to be determined by experiment is the effect of different field
sizes and field overlaps. We achieve this by creating three maps, each with fields
of different density and overlap, and running the learning system on all three
simultaneously. Each map had a different field size: small, medium and large, and
the S and M signals were processed for each map separately and simultaneously.
However only one map can be used for attention and action selection, because
different field locations may be selected on the different maps. By running on
each map in turn we can observe the behaviour and effectiveness of the mapping
parameters. All maps were larger than the work space used by the arm, (any
fields out of range of the arm will simply not be used).

Finally we need to experiment on the possible excitation schedules for field
stimulation. In the present system this consists of the habituation parameters τ ,
α, and the initial excitation values set to the new stimulus fields.

Figure 5 shows the habituation and recovery phases in our experiments. We
used different parameters for the mouth/rest areas and certain other fields. For
the mouth/rest fields and the neighbours of any stimulated fields the following
parameters were used to achieve slower habituation: τ = 10, α = 1.05. For
the directly stimulated fields, another set of parameters: τ = 3.33, α = 0.4
were used to achieve faster habituation. Also, a smaller excitation value was
given to neighbouring fields than for the stimulus fields. During the recovery
phase, the excitation for neighbours can only reach this smaller initial value.
This means that a stimulus can affect the neighbours, but the effect is less than
the originating stimulus field. It should be noted that if a field is stimulated
before, and even if currently it is a neighbour of the best matched field, it uses
the bigger initial value (1.0 as in figure 5) during the habituation and recovery
phases.

Without any contact sensing ability, the arm could not cause any stimuli
during its movements, and because we did not introduce vision at the very early
learning stage, the arm had just two stimuli: the mouth area and the rest area.
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Fig. 6. Mapping with the contact sensing off

So the arm moved to its mouth and went back to the rest position and repeated
the process. During this process, random values were introduced into the motor
driver module if the excitation values of the mouth or rest areas fell below a
threshold. This caused random arm movements that extended to the boundary
of the arm space. During these movements, the arm either ignored objects on
the table or swept any objects out of range. Figure 6 shows the result of this
experiment. The highlighted fields in the figure shows the mouth area (near top
left in each mapping), the rest area (near right bottom corner in each mapping),
and the boundaries of the motor movement, respectively.

With contact sensing turned on, the arm was interrupted when it passed
objects on the table, received stimuli from these interruptions, and obtained new
excitation values for the best matched field based on the sensory feedback and
its neighbors for the current arm position, or updated the existing ones using the
habituation model shown in equation 2. The system also created/updated other

Fig. 7. Hierarchical mapping driven by novelty
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information for this field including the field access frequency, the habituation
phase, motor values, and contact information. Figure 7 gives experimental results
for the current experiment after 120 trials. The central highlighted area in the
small scale mapping relate to the fields of the object which caused interruptions
to the arm movements. It should be noted that in figure 7, we used joint angles
as the arm spatial encoding system, and due to the distortion between the joint
space and Cartesian space as shown in figure 4, the shape of the object displayed
in figure 7 may not represent the “true” shape of the object.

Figure 8 shows the way that field visits varied with trials. The number of vis-
its corresponds to new visits and ignores repeated visits to fields. The mapping
used was the smallest field size. From the figure, we find that at the beginning,
the arm moved between mouth and rest areas as there was no object in the
workspace, so the only attractions were from these two areas. After a while,
when the excitation levels of these two areas went down, some random move-
ments were introduced, and the arm extended along a random direction until
reaching its joint limit. Therefore the number of boundary fields increased, as
shown in the figure. When an object was placed into the workspace and the
arm passed the object, the proximity sensor at the robot finger tip detected the
object and received a stimulus. An excitation value was computed for the field
corresponding to this location, and smaller values were given to the neighbors
of this field. These excitations attracted the robot’s attention to visit this lo-
cation and its neighbors again to explore further and glean more information.
(At the moment, this means detecting the object’s shape — in the future, other
features may be obtained by using vision.) Gradually, the robot gains much de-
tailed information about the object (stimulus), and the excitation level declines
according to the habituation mechanism discussed in section 3. When the ex-
citation values of all the attraction areas fall below a threshold, then random
movements are allowed in order to explore novel stimuli in other newer areas.
The last part of the figure (from approximately trial number 100) demonstrates
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this idea: the number of new internal fields visited gradually levels off and, at
the same time, the number of boundary fields goes up as random movements are
introduced.

In the implementation, we used the smallest field size mapping for atten-
tion selection and motor planning. The habituation function was applied to
the best matched fields and their neighbouring fields. The small field map-
ping can habituate small areas if the fields in that area get stimulated fre-
quently, and allow the arm to explore other nearby areas. This lets the sys-
tem explore the details in some stimulus regions, which can be observed from
the right mapping in figure 7. Different parameters in the habituation model
can change the speed of excitation reduction, as shown in figure 5. From fig-
ure 7, we find that the area where objects were detected attracted much at-
tention from the robot arm, and became well explored. In order to move the
arm from these attractions to other areas, planning needs to shift to mappings
with larger field sizes and random movements need to be introduced. By using
mappings with large field size, the stimulated areas are habituated at a higher
level and are explored quickly but with less detailed information obtained than
when using the small field mappings. Introducing random movements at certain
stages, say when the stimulated area becomes well explored, helps the system
quickly jump to other workspace areas and increases the opportunity to get
stimuli from those areas. Thus, there is a tradeoff between detailed exploration
of small areas and a more rapid covering of the whole workspace with less de-
tail. We may need both in the early developmental learning process in order to
set up sensory-motor mapping for arms and eye/arm coordinations. The issues
of local exploration versus global exploration, introducing random movements,
and combining the planning across different levels are currently being investi-
gated.

After an action is selected by the attention selection module, small levels of
noise are added to the motor values. This helps the system to explore other fields
nearby to the selected one and so enlarge the number of fields visited to enrich
experience about the workspace. Infants also demonstrate such phenomenon
in their early sensory-motor development, we find infants usually miss a target
when they first try to reach it because of the immaturity of their proprioception,
motors and sensory-motor mappings.

Using novelty and habituation as the driving forces in the early robot learning
stage is much inspired by infant learning. This approach allows the system to
develop sensory-motor coordination skills in the most important areas first, and
later extend to other areas. This can help the system to gain enough experience
before exploring the areas which may need high sensory-motor skills and have
less frequent use, for example, the areas in figure 4 with most distortion.

8 Other Related Work

There have been many research projects that have explored the issues involved in
creating truly autonomous embodied learning systems. These include behaviour-
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based architectures [6], hybrid approaches [4], evolutionary methods [15], and
probabilistic techniques [16]. However, a missing element in all these is an ex-
plicitly developmental approach to learning, that is, a treatment of learning in
the context of an epigenetic framework that allows environmental and inter-
nal constraints to shape increasing competence and the gradual consolidation of
control, coordination and skill.

Our developmental approach to robotics is supported by much psychological
work, e.g. [11], and recognises the characterisation of cognitive growth and ex-
pertise due to progressively better interpretation of input from the standpoint
of background knowledge and expectation [7].

The most extensive work on computer based Piagetian modelling has been
that of Drescher [9]. However, Drescher’s system tries to cross-correlate all possi-
ble events and is computationally infeasible as a brain model. Maes showed how
Drescher’s approach can be improved by using focus of attention mechanisms,
specifically sensory selection and cognitive constraints [10], but there remains
much further work to be done to properly understand the value of these con-
cepts for robotic devices. In particular, all the key previous work has been done
in simulation and the concepts of constraint lifting and scaffolding have not been
explored to any extent.

The computing framework used by others has been the sensory-motor schema
drawn from Piaget’s conception of schemas in human activity [18]. This was used
as the fundamental representational element in Drescher’s system [9], following
early work by Becker [2]. The main proponent of schema theory has been Arbib
[1]. We have also used the schema based approach in previous work; in order to
capture spatial aspects we have developed a sensory-motor topological mapping
scheme [12]. Our diagrams of sensory-motor spaces have similarities to those in
Churchland [8].

Wang [21] extended Stanley’s model by introducing long term habituation
into the model using an inverse S-shaped curve. Habituation has been also used
in mobile robots for novelty detection based on a self-organising feature mapping
neural network [13].

9 Discussion

We assume that a rest position exists (equivalent to arm being in the lateral
position) and the result of driving the motors “full on” brings the hand to the
body centre-line (in a position equivalent to the mouth). This rather ballistic
approach to motor action is widely reported in three month old infants. In ex-
periments where kicking behaviour is able to disturb a stimulus, infants learn to
adapt their kicking to achieve a desired visual change but they do this by alter-
ing the timing and frequency of their actions but not the duration of the basic
motor pattern [20]. It seems that the neuronal burst duration is constant but the
firing rate is modulated. This allows multiple muscles to be synchronised as they
all have the same time-base while the amplitudes are varied to alter behaviour.
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Interestingly, the apparently more “scientific” pattern of trying one motor alone
and then the other does not seem to be present. It seems Nature has preferred
algorithms for development, and these are likely to be well worth understanding
and imitating.
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Abstract. This chapter explores modular learning in artificial neural
networks for intelligent robotics. Mainly inspired from neurobiological
aspects, the modularity concept can be used to design artificial neural
networks. The main theme of this chapter is to explore the organization,
the complexity and the learning of modular artificial neural networks.
A robust modular neural architecture is then developed for the posi-
tion/orientation control of a robot manipulator with visual feedback.
Simulations prove that the modular learning enhances the artificial neu-
ral networks capabilities to learn and approximate complex problems.
The proposed bidirectional modular learning architecture avoids the neu-
ral networks well-known limitations. Simulation results on a 7 degrees of
freedom robot-vision system are reported to show the performances of
the modular approach to learn a high-dimensional nonlinear problem.
Modular learning is thus an appropriate solution to robot learning com-
plexity due to limitations on the amount of available training data, the
real-time constraint, and the real-world environment.

1 Introduction

The artificial neural networks are a neurobiologically inspired paradigm that
emulate the functioning of the vertebrate brain. The brain is a highly structured
entity with localized regions of neurons specialized in performing specific tasks.
On the other hand, the mainstream monolithic artificial neural networks are
generally unstructured black boxes, which is their major performance limiting
characteristic. The non explicit structure and monolithic nature of the artificial
neural networks result in lack of capability to incorporate functional or task-
specific a priori knowledge in the design process. Furthermore, if artificial neural
networks often satisfy the requirements of nonlinear control and complex func-
tion estimation, it does not imply, however, that it is equally easy to learn to
represent any function from a finite amount of data. Biologically inspired stud-
ies recently showed some very new interesting perspectives in control systems
engineering. Various works demonstrated that modularity, present in biological
organisms, would extend the capabilities of artificial neural networks.

For a robotic system to carry out complex tasks, taking its environment and
several sensorial modalities into account, a single neural network may not be
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sufficient. The modular approach we propose is a sequential and bidirectional
structure of neural modules. It is difficult to train globally a chained function-
ality of networks. The training of such an architecture is achieved through the
introduction of supplementary neural modules that are only active during the
learning phase. These modules allow to reconstruct intermediate representations.
The neural architecture is thus referred to as a bidirectional approach.

Only specific combination diagrams are suited for an efficient learning. In our
case, the organization of the neural modules is based on a geometrical comprehen-
sion of the considered problem. The modular neural decomposition and its learn-
ing paradigm is validated with SOM-LLM-type networks. The objective is to learn
and to perform nonlinear control tasks using visual feedback. The proposed archi-
tecture has been tested on a 7 degrees of freedoms (dof) robot-vision system and
the modular bidirectional architecture turns out to be efficient. Indeed, the result-
ing proposedmodular neural networkmodels demonstrate greater accuracy, gener-
alization capabilities, comprehensible simplified neural structure, ease of training
and more user confidence. These benefits are obvious for certain problems, depend-
ing upon availability and usage of a priori knowledge about the problems.

This paper is organized as follows. Section 2 introduces the concept of mod-
ularity in term of a biological inspiration to develop new learning architectures.
This section motivates the need of a modular neural architecture, presents ex-
isting modular networks and presents the bidirectional learning architecture.
Section 3 briefly reviews the basics of the SOM-LLM network which will serve
as a module in our approach. In section 4, we will present the adopted serial
modular architecture for the specific task of robot control. Section 5 reports the
results of training the architecture on the visual servoing task. Section 6 draws
final conclusions and suggests possible extensions.

2 Modular Learning

2.1 Motivation and Biological Inspiration

The basic concept of artificial neural networks stems from the idea of modeling
individual brain cells or neurons in a fairly simple way, and then connecting
these models in a highly parallel fashion to offer a complex processing mechanism
which exhibits learning in terms of its overall nonlinear characteristics. Because
of the modeling operation, different model types have been derived, ranging
widely in their complexity and operation, e.g., some are analog whereas others
are binary. This means that some of the models vary considerably when their
operation is compared to actual brain cells.

The overall architecture of a brain, which is not yet well understood, is highly
complex in terms of connectivity and structure. The brains are not of one par-
ticular form, i.e. they are not all identical but they are composed of different
regions which consist of different types of neuron. Artificial neural networks (used
in conventional approaches) are generally well structured and simply coupled,
thereby enabling the possibility of understanding their mode of operation. Based
on this assumption and considerations, artificial neural networks can rarely be
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used in a black-box, stand-alone mode, in that they are generally not powerful
or versatile enough to deal with more than two or three tasks, often being re-
stricted in operation to one specific role. For an actual application, therefore,
it should be remembered that, although a neural network may be employed as
a key processing element, much interfacing, expert or rule-based systems, must
also be employed.

If the nature or complexity of the problem is greater than that with which the
neural network can deal adequately, poor overall performance will result. This
could mean that the structural complexity of the neural network employed is
not sufficient for the problem in hand. However, in some cases, neural networks
may be too complex for the problem, i.e. the network is over-parameterized or
functionally too powerful for the particular problem addressed.

By combining several networks, complex tasks, nonlinear problems, the envi-
ronment and also several sensorial modalities can be taken into account. When
multiple neural networks are integrated in a modular architecture, it is not al-
ways possible to define the learning. Indeed, only specific combination diagrams
are suited for efficient learning. In particular, it appears almost impossible to
create neural processing architectures, or to treat multiple functionalities. On
the other hand, a modular neural network learning scheme with an adequate de-
composition allows to learn and solve complex problems which cannot be treated
or which are treated with difficulty with a single monolithic network. This is the
reason for the employment of modular neural network architectures.

2.2 The Concept of Modular Learning

In a very general and abstract sense, modular systems can be defined as systems
made up of structurally and/or functionally distinct parts. An overview of the
modularity concept is proposed in [3]. While non-modular systems are internally
homogeneous, modular systems are segmented into modules, i.e., portions of
a system having a structure and/or function different from the structure or
function of other portions of the system. Modularity can be found at many
different levels in the organization of organisms.

The biological modularity concept has several largely independent roots [4].
In developmental biology the modularity concept is based on the discovery of
semi-autonomous units of embryonic development. On the other hand, evolution-
ary modules are defined by their variational independence from each other and
the integration among their parts, either in interspecific variation or in muta-
tional variation. Functional modules, on the other hand, are parts of organisms
that are independent units of physiological regulation. The precise definition
of all these concepts is somewhat difficult and still controversial. Different ap-
proaches and architectures have been developed and proposed over the past
years and the real challenge, however, is to determine how these different kinds
of modules learn and relate to each other [4].

Whatever the decomposition, the learning of a modular neural scheme is cru-
cial. Each module has to learn a portion of the problem and one should notice that
the modules can also be trained using biologically inspired training rules [14].
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Fig. 1. Different modular neural architectures, a) a parallel architecture, b) a serial
decomposition, c) a hierarchical structure, d) the Mixture of Experts model

2.3 Existing Modular Decompositions

The modularity concept is illustrated by numerous examples in [3]. These various
architectures do no pose the same problem in terms of learning. The organization
of the learning is more clearly presented in [2]. This work presents a classification
of the architectures depending on the nature of the modules and on the elements
that are combined by considering homogeneous architectures (where all modules
are equivalent to an ideal neural network defined by its interface and its capa-
bility to approximate any arbitrary function). The authors distinguish Mixtures
of Experts, hierarchical, parallel and serial structures. These modular neural
structures are represented by figure 1.

Mixtures of Experts [10, 11] exploit the capabilities of the divide and conquer
principle in the design and learning of the modular artificial neural networks.
The strategy of divide and conquer solves a complex computational problem by
dividing it into simpler sub-problems and then combining the individual solu-
tions to the sub-problems into a solution to the original problem. The divisions
of a task considered in this chapter are the automatic decomposition of the map-
pings to be learned, decompositions of the artificial neural networks to minimize
harmful interaction during the learning process, and explicit decomposition of
the application task into sub-tasks that are learned separately.

A typical hierarchical decomposition can be represented by a decision tree,
where the output of a network in a given layer will select a network of the
inferior layer. Numerous combination schemes of parallel decompositions have
been proposed, in which several neural networks treat in parallel the same or
similar information. Different approaches can be distinguished: data fusion ar-
chitectures, ensemble-based approaches, local experts, etc. Serial architectures
split a complex problem into successive partial tasks, the set of input variables
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are not presented to a single network anymore. Each module treats a few inputs
and intermediate results appear between the modules.

More recently, functional networks have been developed in [5, 6]. Unlike other
neural networks, in these networks there are no weights associated with the
links connecting neurons, and the internal neuron functions are not fixed but
learnable. These functions are not arbitrary, but subject to strong constraints to
satisfy the compatibility conditions imposed by the existence of multiple links
going from the last input layer to the same output units.

Moreover, modular architecture networks specially dedicated to motor learn-
ing and robot control have been proposed and experimented. Examples can be
found in [7, 11, 13, 1, 17]. The idea of endowing robotic systems with learning
capabilities is not new [18] and all these variants have been proposed to improve
the performance over monolithic neural networks.

2.4 Our Modular Decomposition

The Serial Decomposition. In terms of a control systems environment, the
majority of practical controllers actually in use are both simple and linear, and
are directed toward the control of a plant which is either reasonably linear or at
least linearizable. The use of artificial neural networks for such an environment
is considered and summarized in [18], however it is sufficient here to state that
an artificial neural network is usually a complex nonlinear mapping tool, and
the use of such a device for relatively simple linear problems makes very little
sense at all. The fact that modular neural networks have the capability of deal-
ing with complex nonlinearities in a fairly general way is very interesting and
extremely attractive. By their nature, nonlinear systems are nonuniform and in-
variably require custom designed control scheme/modular architecture to deal
with individual characteristics. No general theory deals comprehensively with
the modular decomposition, so we propose a serial approach to divide a problem
in simpler sub-problems.

Because of the global nature of the approximations obtained in fully con-
nected networks, it is generally difficult to train such networks when the data
are sampled from an underlying function that has significant variation on a local
or intermediate scale.

The advantage of modular networks is that they can be structured more eas-
ily then fully connected networks. A modular architecture may contain a variety
of types of network modules that are more or less appropriate for particular tasks.
Types of modules can be considered to be networks with different parameters, with
different topologies, with different architectures, with different complexity, and
with different learning rules. A priori knowledge can thus be used to choose par-
ticular classes of neural modules that are appropriate for particular tasks. Also, by
partitioning a complex mapping, modular architectures tend to find representa-
tions that are more easily interpretable then those of fully connected networks.

Among basic architectures, one can find the parallel and the serial decom-
positions. A parallel architecture consists of a set of neural modules having the
same inputs (i.e. trained for the same task) and whose estimations are combined.
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Fig. 2. Modular architecture with two serial modules, M1 and M2, and an inverse
module M2inv for the learning of M1

A serial architecture is a collection of individual neural modules trained on dif-
ferent sub-problems of a same complex problem. This architecture may be useful
for partitioning the learning task with several neural networks of reduced sizes.

We have adopted the serial architecture to decompose the complexity of a
robot-control problem. By choosing SOM-LLM neural modules of less than three
inputs, the convergence of the self-organizing maps is presumed. In this modular
architecture, the neural module can be individually or sequentially trained.

The decomposition of a complex problem in different sub-problems brings in
some internal representations. These representations are often not available, and
we thus need to estimate them by an inverse module [13].

Bidirectional Approach. The principle of the bidirectional architecture will
be presented with an example. Consider two serial blocks, A and B (see fig-
ure 2). Each neural module is implemented with a SOM-LLM which requires
a supervised learning scheme. The desired output of module A is not available.
This internal representation must be estimated. We thus introduce an additional
module, C, which has to learn the same internal representation. ZA

k is the es-
timated internal representation made with module A, ZC

k is the estimation of
the internal representation made with module C. ZA

k will serve to define the
error signal for the learning of module C. On the other hand, ZC

k will serve to
determine the error signal for the learning of module A. ZA

k is also the input
of module B. One should note that module C represents the inverse of module
B, and that module C does not participate to achieve the output of the whole
modular architecture.

To enforce the convergence of the learning of the modular architecture, the
estimations of the intermediate representations have to be constrained. In [2],
the authors show that by imposing the statistical properties on the internal
representations (i.e. mean and variance), the learning stability and convergence
are then ensured.

The versatility and capabilities of the new proposed modular neural networks
are demonstrated by simulation results. A comparison of the introduced modular
neural network design techniques with a single network is also presented for
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reference. The results presented in this chapter lay a solid foundation for design
and learning of the artificial neural networks that have a sound neurobiological
basis that leads to superior design techniques.

3 The Extended Kohonen Maps (SOM-LLM)

The neural network we adopted for the implementation of a neural module is the
SOM-LLM (Self-Organizing Map-Local Linear Map)[2]. This neural network is
a combination of the extended self-organized Kohonen map [12, 15] and ADA-
LINE networks [16]. The SOM-LLM has been chosen for its simplicity, for its
implementation facilities, and for its topological properties (neighborhood and
competition between neurons). The main objective of the SOM-LLM is to ap-
proximate any transformations by a linear local estimation.

The SOM-LLM is composed of a grid of neurons for the discretization of the
input space, a grid of neurons for the discretization of the output space, and
ADALINES associated to each neuron from the output map to compute a linear
local response. The SOM-LLM architecture is represented by figure 3.

For each input vector (stimulus), the neurons of the input map compete to
be the best representation of the input xk. The weights of the winner, w

(in)
s , are

those that minimize the distance with the input:

+
-

+

+

+
-

Input map

Output map

ADALINES

x

ŷ

y

wout
s

As · (x − win
s )

win
s

Fig. 3. SOM–LLM architecture
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s = arg min
∥∥∥xk − w(in)

∥∥∥ . (1)

The weights Δw(in) and Δw(out), respectively in the input and in the output
maps, are adapted using the two following equations:

Δw(in) = w(in) + εhs

(
xk − w(in)

)
, (2)

Δw(out) = w(out) + ε
′
h

′
s

(
u − w(out)

)
, (3)

where ε and ε
′

are the learning rates, hs and h
′
s the neighborhood functions,

and u the desired output.
Thus, the output of the network is expressed by:

y = w(out)
s u + As

(
xk − w(in)

s

)
, (4)

where A is the ADALINE weight vector.
Each module of our learning architecture will be a SOM-LLM network.

4 Design of the Modular Neural Controller

In order to validate the learning of the proposed modular architecture, we pro-
pose to control a 4-dof robot-arm (see figure 6) with two cameras mounted on
a 4-dof robotic head (pan, tilt, and two vergences). The effector and the wrist
positions are extracted form both left and right images. The objective is to com-
pute the orientation of the segment defined by the wrist and the effector with
only image information and the head angles values (the wrist is centered in the
images and the vergences are symmetric).

The approach is based on the projection of the effector and the wrist on a
horizontal plane. These geometrical transformations of the physical system will
determine the decomposition of the modular neural architecture.

A first step consists in computing the effector and wrist coordinates, respec-
tively X ′′

E , Y ′′
E and X ′′

P , Y ′′
P , in the plane defined by the cameras focal points

and the wrist (see figure 4). The projection of the wrist depends only on the
vergence angle value αv. The projection of the effector depends on the vergence
angle value αv but also on the difference between the X-coordinates of the wrist
and the effector in the image space.

In the second step, the points from the previous plane are projected on the
horizontal plane. The X-coordinates are not affected by this transformation. The
new Y-coordinate of the wrist depends on the tilt angle value αt. The projection
of the effector on the horizontal plane requires at last a correction (as can be
seen in figure 5) which is function of the difference between the Y-coordinates
of the wrist and the effector in the image space.
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Fig. 4. Plane formed by the two focal points Fg and Fd and by the wrist P

The estimated orientation can then be expressed by the following equation:

θ4 = cos−1

⎛
⎝

√
(XP − XE)2 + (YP − YE)2

l4

⎞
⎠ , (5)

with l4 the length of the effector of the robot.

5 Results

5.1 Application to a Visual Servoing Task

The performances of the proposed architecture are evaluated on a visual servo-
ing task. The proposed architecture is used to control a 4-dof robot (see figure
6) through visual feedback. Indeed, the neural architecture estimates the ori-
entation of an object in the scene which will serve as a control signal for the
fourth axis of the robot-arm. The computation of the three first axis has been
presented in [8], also with a modular architecture. The information used to con-
trol the robot-arm are the joint angle values of the stereoscopic head and the
positions of the effector and of the wrist in both images. The principle of visual
servoing is presented in [9]. Our scheme is depicted in figure 7.

The inputs of the modular neural architecture are defined as follow:

– αp, αt and αv, the pan, tilt and vergence angle values of the stereoscopic
head (the left and right vergences are kept symmetric),

– XgE , YgE , XdE and YdE , respectively the coordinates of the effector in the
left and right image,
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Fig. 6. The 4 degrees of freedom robot

The outputs of the modular neural architecture are:

– XE , YE , the coordinates of the projected effector on the horizontal plane.
– X ′

E , Y ′
E , the coordinates of the projected effector on the horizontal plane

before correction.
– X ′′

E , Y ′′
E , the coordinates of the effector in the plane defined by the cameras

focal points and the wrist.

5.2 Wrist and Effector Projected Coordinates

The modular decomposition we propose is based on geometrical knowledge about
the robot-vision system. The global architecture is showed by figure 8. One can
see that the estimation of the wrist’s projected coordinates is learned by only
one module which is represented by figure 9. The learning of this module results
in a mean error that is less than 1% and a maximum of 3% .

The estimation of the effector’s projected coordinates requires three steps and
thus three neural modules (see figure 10): a first step (P ′′

E) consists in computing
the effector’s coordinates in the plane defined by the cameras focal points and
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Fig. 8. The proposed decomposition based on significant values

the wrist, the two other steps are the projection on the horizontal plane and a
correction (H and PE).

The first module is function of the vergence angle and function of the coor-
dinates of the wrist in the image. This relationship is expressed by the following
equations:

X ′′
E =

−B.b.c

a.d − b.c
, Y ′′

E =
−B.a.c

a.d − b.c
. (6)

with (f is the focal distance) :

a = f sin(α′
v) − XgEdx cos(α′

v) , (7)
b = f cos(α′

v) + XgEdx sin(α′
v) , (8)

c = f sin(α′
v) + XdEdx cos(α′

v) , (9)
d = −f cos(α′

v) + XdEdx sin(α′
v) . (10)
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Fig. 9. The proposed single-module-network for implementing the wrist projection
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Fig. 10. The proposed modular architecture for the effector projection

The desired necessary outputs for the training of module P ′′
E , are either known

(like X ′′
E) either estimated by an inverse module (like Y ′′

E ), which is also repre-
sented on figure 10.

X ′′
E and Y ′′

E are estimated by module PE and by using an inverse module.
The results are presented by figures 11-13. The first figure, 11, shows Ŷ ′′

E =
f(Y ′′

E ). It clearly shows the bijective relationship (close to linear) between the
computed and the desired output. The rate is not one because the estimation
of the intermediary representation is only constrained with a null average and
a unit variance. These constraints are very interesting. Firstly, without these
constraints, we cannot enforce the convergence to a representative estimation of
the intermediate space. Secondly, the learning performances of Kohonen maps
are better with input signals confined in a same range. In other words, the
input signals of a map must have the same statistics. Thus, the online learning
of an architecture composed of several cascaded modules is possible because
all the input signals are constrained in the same manner. We know that other
constraints can be used.

The second step is for estimating the internal representation h which allows
to compute YE from Y ′

E . H is a function of three parameters, which are X ′′
E ,

Y ′′
E and YgE . The first two (X ′′

E and Y ′′
E ) are estimated by module P ′′

E . The
learning of module H thus requires the outputs of module P ′′

E associated with
the output of another inverse module. The learning performances are validated
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Fig. 11. Ŷ ′′
E = f(Y ′′

E ) (in mm)

Fig. 12. ĥ = f(h) (in mm)

Fig. 13. ŶE = f(YE) (in mm)
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by comparing the estimation ĥ to the theoretical value given by the following
geometrical relationship:

ĥ = a.h + b.Y ′′
E + c (11)

The set of data points represented by figure 12 and representing the in-
termediate space seems to show that the learning process failed. In fact, h is
estimated by two different neural modules. Module H gives a first estimation
ĥ = f1(X ′′

E , Y ′′
E , YgE) while an inverse module delivers a second estimation of h

depending from other values, ĥ = f2(YE ,HE, αt), with HE the effector’s height
in the 3-D space. The only constraints used to force the outputs of f1 and f2 to
converge to the same value are a null average and a unit variance. The resulting
estimation is either h or every other solution of f1 and f2.

A more detailed analysis allows us to say that the estimation ĥ is a linear
combination of h and Y ′′

E .

ĥ = a.h + b.Y ′′
E + c . (12)

In this case:

f1 = a

√
X ′′

E
2 + Y ′′

E
2YgE

f
+ bY ′′

E + c , (13)

f2 = a
HE − YE tan(αt)

cos(αt)
+ b

YE tan(αt)
sin(αt)

+ HE − YE tan(αt) + c , (14)

with a, b and c, some fixed coefficients.
Having an output ĥ of H different from h does not disturb the learning (12) of

the whole modular architecture. The performance of the learning is represented
by figure 13. A comparison is presented with a single monolithic network by
figure 14. What we need is that h is contained in ĥ. The learning is good, the
mean error is less than 1% and the maximum is about 4% for the estimation of
h.

θ4, the orientation of the robot, can now be computed by using XP , YP and
XE , YE (5). This estimation is performed with a mean error of 1.5 degrees. This
joint angle value is then used as a control signal for the robot. One can note that
this approach allows to evaluate the orientation of every object defined in the
scene and thus to control a 4-dof robot to reach its position and orientation.

6 Conclusion

We have presented a robust modular neural architecture that is able to learn
complex systems. Learning robotic tasks is not straightforward. Nonlinear, often
with a great number of degrees of freedom, it requires a lot of computational
power, lots of training data, and the convergence may then not be enforced.
We chose modularity, widely present in the biological world, to decompose the
complexity of a problem. A high dimensional fully connected neural network is
replaced by a set of well organized modules which can be more easily trained.
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Fig. 14. The learning error of the global bidirectional modular learning architecture
compared to a single network (a single map)

The main contribution of the work is a formulation that makes a set of neural
modules able to converge and to learn any complex system.

Negative aspects of the use of artificial neural networks remain, however,
in that they present problems in terms of stability and approximation analysis,
and furthermore, it is often difficult to choose the modular network architecture.
Even though, the proposed modular neural network is very well suited for online
applications.

Future study will concern the possibility of using other constraints to enforce
the convergence toward representative internal representations. Finally, further
work is needed to understand the structural properties of the modular network
and the plant under control.
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Abstract. Improving the game play in RoboCup middle size league
requires a very robust visual opponent and teammate detection system.
Because RoboCup games are highly dynamic, the detection system also
has to be very fast. That both conditions are not necessarily contradic-
tory is shown in this paper. The described multilevel approach docu-
ments, that the combination of a simple color based attention control
and a subsequent neural object classification can be applied successfully
in real world scenarios. The presented results indicate a very good overall
performance regarding robustness, flexibility and computational needs.

1 Introduction

In RoboCup middle size league, teams consisting of four robots (three field
players plus one goal keeper) play soccer against each other. The game itself is
highly dynamic. Some of the robots can drive up to 3 meters per second and
accelerate the ball even more. Cameras are the main sensor used here (and often
the only one). To play reasonably well within this environment, at least 10–15
frames per second must be processed.

Instead of grasping the ball and running towards the opponents’ goal, team
play and thus recognizing teammates and opponent robots is necessary to further
improve robot soccer games. Because of noisy self localization and an unreliable
communication between the robots, it is somewhat risky to rely only on the
robots’ positions communicated between the teammembers. In addition, oppo-
nent robots do not give away their positions voluntarily. Hence, there is a need
for a visual robot detection system.

A method used for this task has to be very specific to avoid detecting too
many uninteresting image parts, yet flexible enough to even detect robots that
were never seen before. A robot recognition approach used in a highly dynamic
environment like RoboCup also has to be very fast to be able to process all
images on time.

In contrast to the scenarios where lot of other object detection methods on
mobile robots are used, the setting described here is a lot more natural. Objects
are in front of different, cluttered backgrounds, are often partially occluded,
blurred by motion and are extremely variable in sizes between different im-
ages. Besides that, the shapes of robots from different teams vary highly, only
limited by a couple of RoboCup regulations and some physical and practical

S. Wermter et al. (Eds.): Biomimetic Neural Learning, LNAI 3575, pp. 349–361, 2005.
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constraints. Additional difficulties arise because the robots’ vision system, which
includes a very large aperture angle, causes extreme lens distortions.

The approach presented here is a multilevel architecture. This includes one
level for the selection of interesting regions within the image that may contain
a robot using simple and fast heuristics. The next level then classifies these
regions with more complex and costly methods to decide if there is in fact a
robot within the selected regions or not. This classification step is realized using
artificial neural networks.

In this paper we focus more on the later steps: the choice of the used features,
their parameterization and the subsequent neural decision making. We discuss
in detail the performance of the neural networks on robots from the training
image set, on robot views previously unseen and even on totally unknown robot
types. The test cases used for these results contain various kinds of perceptual
difficulties as described above. Considering this, the presented results indicate a
very good overall performance of the presented approach.

In the next Section the problem is explained. In Section 4 our method is
described in detail, including all separate steps. Results are presented in Section
5. In Section 3 our results are discussed in the context of related work. Finally,
Section 6 draws conclusions.

2 The Problem

As already mentioned, RoboCup is a quite realistic testbed. In contrast to other
object recognition problems implemented on mobile robots, a lot more problems

Fig. 1. Example images, taken from The Ulm Sparrows, showing different types
of perceptual difficulties. In the first two pictures (upper row) the variability in sizes
of robots from the same type can be seen nicely. Recordings three and four showing
occlusions, image five illustrates the lens distortion, which let the robot tilt to the left,
and finally picture six is blurred by the robots own movement
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arise here that may also occur in real world scenarios: partial occlusions between
objects or at the image borders, vast size variations, huge variations in (robot)
shapes, motion blur through own or object motion, cluttered, unstructured and
often unknown background and even unknown objects (e.g. robot types) that
were never seen before. Figure 1 illustrates some of these problems, showing
images recorded from one of our robots during the last tournament. In the first
two pictures the variability in sizes of robots from the same type can be seen
nicely. Recordings three and four showing occlusions, image five illustrates the
lens distortion, which let the robot tilt to the left, and finally picture six is
blurred by the robots own movement (the used pictures are admittedly not that
badly blurred). Please note also, how different the individual robots look like.

3 Related Work

Object detection is a well known problem in current literature. There are many
approaches to find and classify objects within an image, e.g. from Kestler [1][2],
Simon [3] or Fay [4][5] to name just a few that are developed and investigated
within our department.

Within RoboCup the problems are rather less well defined then in their sce-
narios and real-time performance is not an absolute prerequisite for them, which
may be the main reason that up to now there are only few workings published
about more complex object detection methods in RoboCup. Most of the partic-
ipants in the RoboCup middle size league use color based approaches, like e.g.
in [6][7][8]. One interesting exception is presented by Zagal et. al. [9]. Although
they still use color-blob information, they let the robot learn different parame-
ters for the blob evaluation, like e.g. the width or the height of the blob using
genetic algorithms. Thereby they are able to even train the robot to recognize
multi-colored objects as used for the beacons on both sides of the playing field
(as used in the Sony legged league, which is well comparable to the middle size
league). Another method used in this league is introduced by Wilking et. al.
[10]. They are using a decision tree learning algorithm to estimate the pose of
opponent robots using color areas, its aspect ratio, angles between line segments
and others.

One attempt to overcome the limitations of color based algorithms is pre-
sented by Treptow et. al. [11] where an algorithm called Adaboost uses small
wavelet like feature detectors. Another approach, that does not even need a
training phase at all, is presented by Hanek et. al. [12]. They use deformable
models (snakes), which are fitted to known objects within the images by an
iterative refining process based on local image statistics to find the ball.

As you will see, the presented solution approach has several advantages over
these methods: First of all, the system is able to work in real time. As real time is
a very burdened item, it is meant here as being able to process as much images
as necessary to fulfill a specific task, in this case at least around 15 images
per second. Another advantage is, that the system do not need an explicit, a
prior known model. The model is learned automatically from the example data.
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And because of the layered architecture, individual components of the system
can be exchanged easily without the need of readjusting the remaining parts.
In contrast, it can be easily extended with e.g. a tracking module to further
stabilize the object detection task.

4 Solution Approach

The robot recognition method we present in this paper can be roughly divided
into the following individual steps:

1. Detect regions of interest.
2. Extract features from these regions.
3. Classify them by two neural networks.
4. Arbitrate the classification results.

The final result is a decision, if a robot is seen or not, and if it is part of the own
or the opponent team. The whole process is illustrated in Figure 2 to further
clarify the individual steps.

In the first step, potential robot positions are searched within the recorded
images to direct the robots attention to possibly interesting places (1). In the
next step different features are calculated for each of the detected regions of inter-
est (ROI). They describe different attributes of the robot as general as possible
to be sensitive to the different robot shapes yet specific enough to avoid false

Classification

5−dim 160−dim

[0−1][0−1]

(1)

(2)

(3)

(4)

Multilayer
Perceptron

Histogram

Attention
Control

Orientation

Multilayer

Source Image

{None,Own,Opp}

Perceptron

Arbitration

Simple
Features

Fig. 2. Data flow from the source image, passing through the various processing stages,
up to the recognition result
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positives (2). Used features are for example the width of the robot, a percentage
value of the robots color and orientation histograms (and others described later
in detail). All these features (i.e. the vector describing the features) are then
passed over to two multilayer perceptron networks which vote for each feature
vector if it belong to a robot or not (3). A final arbitration instance then decides
wehther we assume a teammate, an opponent robot or no robot at all (4).

Regions of interest are by the way rectangular bounding boxes around found
image areas. Such rectangular boxes are considerably faster to process than pixel-
precise shapes around the object. The drawbacks of such simplified areas can be
mitigated by the below described process using binary masks (Section 4.2).

4.1 Region of Interest Detection

In RoboCup, all relevant objects on the playing field are color coded. The floor
is green, the ball is orange, the goals are blue and yellow and the robots are
mainly black with a cyan or magenta color marker on top of them. So a simple
attention control can be realized using a color based mechanism.

Consequently, region of interests are, in principle, calculated by a blob search
within a segmented and color-indexed image (for a detailed explanation see e.g.
[13] or [14]). Additional model based constraints reduce the number of found
ROIs. Different possible methods are already explained in detail in [15], so we
will not detail this here.

Of course, such a simple method cannot be perfect. There is always a tradeoff
between how many robots are focused and how many regions not containing a
robot are found. Because all subsequent processing steps only consider these
found regions, it is important not to miss too many candidates here. On the
other hand, too many non-sense regions increases the computational cost of the
whole process.

4.2 Feature Calculation

The following features are finally used:

– perceived width of the robot on the image,
– percentage amount of black color within the whole ROI,
– percentage amount of (cyan or magenta) label color, separated into left,

middle and right part of the ROI,
– an orientation histogram.

The first three items (respectively five values) are so called simple features
(see Figure 2). The black and label color percentages are determined using the
already mentioned color-indexed image.

The orientation histogram, the right process sequence in Figure 2, is a method
to describe the overall shape of an object in a very general and flexible way.
First of all, the found ROI is subdivided into several subwindows as illustrated
in Figure 3. For each subwindow we then calculate independently the direction
and the strength of the gradient in x- and y-direction (using a Sobel operator on
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Fig. 3. Orientation histogram using 3 × 3 subwindows and 8 discretisation bins. The
individual histograms corresponds with the particular subwindows from the right, origi-
nal image. For example a significant peak at direction zero degree, like e.g. in histogram
eight, indicate a sole vertical line in the original image at the corresponding position

a grayscale image). The directions of the gradients are discretized into a specific
number of bins (e.g. eight in Figure 3). Finally we sum up all occurrences of
the specific direction weighted by their strengths. To be even more flexible, the
individual subwindows may overlap to a specified degree (see Section 5).

Because of extreme lens distortions, hollow robot bodies or partial occlusions
with other objects, there is a high chance that there is also a lot of noise in-
side the selected regions of interest. To minimize the influence of this, a binary
mask is calculated from the robot and label colors (again with respect to the
color-indexed image). The mask is afterwards dilated several times to fill small
holes. The orientation histogram is then only calculated, where the binary mask
contains a positive value.

Original image

Segmented image Color mask Resized mask

Resized greyscaleGreyscale image

Orientation histogram

Fig. 4. Sketch of the various steps to calculate the histogram features including the
robot mask and the maximal size reduction
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Another problem arises due to very different robot sizes. A close-up of a
robot may contain a lot more details compared to a wide-distance image. So if
a ROI is larger than a specific threshold, the ROI is scaled down to this upper
size limit. For a more clear and concise explanation of the various preprocessing
steps, please have a look at Figure 4.

4.3 Neuronal Networks Classification

After calculating the different features, they are passed to two artificial neural
networks as can be seen in Figure 2. One network only processes the simple
features, the input for the second one are the orientation histogram values. The
breakdown into two networks turned out to be necessary in order not to let the
pure mass of data of the orientation histogram overvote the few simpler features.

Both neural networks are standard multilayer perceptron networks contain-
ing only one hidden layer and one single output neuron trained with a normal
backpropagation algorithm. Both networks produce a probability value that de-
scribes the certainty of seeing a robot regarding the given input vector.

The input layer of the first network consists of 5 input neurons according to
the five values described above. The number of neurons for the input layer of the
second network depends on the parameterization of the orientation histogram.
In Section 5 we present different parameterizations, but in general the size is
the product of the number of subwindows in vertical and horizontal direction
multiplied with the number of discretisation steps for the gradient direction. The
number of neurons in the hidden layers is up to the network designer and is also
evaluated in detail in Section 5.

4.4 Arbitration

The final classification decision is made from a combination of the outputs of the
two neural networks. Because every network only uses a subset of the features,
it is important to get an assessment as high as possible from each individual
network. Of course a positive feedback is easy, if both networks deliver an as-
sessment of nearly 100%, but in real life, this is only rarely the case. So the
network outputs are rated that way, that only if both networks give a proba-
bility value above 75%, it is assumed that a robot is found within the region
of interest. The membership of the robot to the own or the opponent team is
determined using the robots color marker. If the ROI contains a lot more cyan
pixels than magenta pixels or vice versa, the membership can be assumed for
sure.

5 Experimental Results

As usual in a robot vision system, especially in combination with artificial neural
networks, there are a lot of parameters that can and must be adjusted properly.
The next sections discusses all these possible parameters followed by some re-
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sults how the complete permutation of all possible values and the selected best
combination perform during different tests.

5.1 Parameterization

Having a closer look at the orientation histogram: The larger the overlap between
the individual subwindows, the less problematic are ROIs that do not match a
robot exactly (in size or in position), but on the other hand, the result is getting
less specific. The number of subwindows in both directions controls how exact
the shape representation will be. This is again a decision between flexibility and
specificity. It can be wise to choose a larger number here if all robot types are
known already, but disadvantageous, if more flexibility is needed. Exactly the
same applies for the direction discretisation, i.e. the number of bins used in the
histogram.

Another starting point for parameterization are the perceptron networks.
The number of input neurons is determined by the parameters of the orientation
histogram or the number of simple features and the number of output neurons
is fixed to only one (the probability for seeing a robot). But there is still the
hidden layer which can be adjusted. The more neurons a network has in the
hidden layer, the better it may learn the presented examples, but the higher is
the risk to overfit the network and to lose plasticity and the ability to generalize
the learned things. Another drawback of a large hidden layer is the increasing
computational cost caused by the full connectivity between the neurons.

To be more concrete, the following values have been tested for the respective
parameters:

– Subwindow overlap: 30%, 20%, 10% or 0% (no overlap).
– Number of subwindows: 2, 3 or 4 (in both directions).
– Number of histogram bins: 6, 8, 10, 12.
– Number of hidden neurons: identical to the number of input neurons or half,

one third or one quarter of it (applies for the perceptron network which deals
with the orientation histogram data, for the other network, see below).

5.2 Training and Classification

This paper focuses on the evaluation of the object recognition performance and
not the performance of the attention control or the overall process like in [15]. So
we labeled all the images used in this section by hand to ensure, that the perfor-
mance is only determined by the classification instance and not by inaccuracies
from the attention control.

We used images from six different types of robots with varying shapes col-
lected during several tournaments (examples of the different robot types are
already shown in Figure 1, Figure 5 shows some of the Ulm Sparrows with ROI
drawn around them). The collection contains 682 robots from:

– AIS/BIT-Robots (84 ROIs)
– Osaka University Trackies (138)
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Fig. 5. Some of the labeled Ulm Sparrows images from varying distances and viewing
directions with the respective ROIs around them

– Attempto Tübingen (116)
– Clockwork Orange Delft (148)
– Mostly Harmless Graz (102)
– Ulm Sparrows (94)

Additionally, we used 656 ROIs as negative examples:

– 164 carefully selected ones, like e.g. black trousers or boxes
– 492 randomly chosen areas

The learning phase is done by using five out of the six robot types, choosing
90% of the ROIs of each robot type, mix them with again 90% of the negative
examples and train the artificial neural networks with them. The training phase
is done three times for each combination of robot types and parameters to choose
the network with the lowest mean square error regarding the training material
to avoid unfortunate values of the (random) initialization.

After that, we analyzed a complete confusion matrix on how the network
recognizes the training data set itself or the remaining 10% of the robot and
negative images which it has never seen before. Additionally, we calculated such
a confusion matrix for a totally new (the sixth) robot type. Because the neural
network emits a probability value between zero and one, a positive classification
answer is assumed if the probability value is above 75% like it is handled for the
final arbitration step (see Section 4.4).

5.3 Orientation Histogram

First results are provided for the neural network which processes the orientation
histogram vector. In Table 1 the average results over all possible parameters for
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Table 1. Resulting confusion matrices when presenting different data sets to the neural
network responsible for the orientation histogram values. The results are averaged over
all possible parameter permutations

Training data Positive Negative

Correct decision 99.2% 99.8%

False decision 0.8% 0.2%

Evaluation data Positive Negative

Correct decision 91.9% 97.1%

False decision 8.1% 2.9%

Table 2. Resulting confusion matrices when using the best parameter settings for the
orientation histograms. The results are averaged over all possible robot type permuta-
tions

Evaluation data Positive Negative

Correct decision 100% 99.5%

False decision 0.0% 0.5%

Unknown robot type Positive

Correct decision 96.4%

False decision 3.6%

the different data sets (the training and the evaluation set) are listed. The upper
left cell displays the percentage of robots that are correctly identified as such,
whereas the lower right cell represents the remaining percentage of regions that
are assumed as not being a robot while in fact are a robot. The same applies for
the other cells for regions not containing a robot.

First we test, how well the artificial networks perform if confronted again
with the data set used during the training phase (the first part of Table 1).
Note that the results are almost perfect, showing nearly 100% in the upper row.
This means, that the networks are able to memorize the training set over a wide
range of used parameters. The second part of the table is calculated using the
evaluation data set. Remember that these values are made using images from
the same robot types which are not presented to the network during the training
phase. So even when averaging over all possible parameter values, the networks
classified already over 90% correct.

Remember, that we trained the networks alternately only with five robot
types. So now we can select the parameter combination, for which the networks
perform best if confronted with the sixth type. Table 2 shows the performance for
these settings one time for the evaluation data set and the other time for the sixth
robot type (without negative examples respectively). The parameters proven to
perform best are the following: Subwindow overlap 20%, number of subwindows
4, number of histogram bins 10, number of hidden neurons: 160 (identical to the
number of input neurons). There are a couple of other parameter settings that
perform only slightly worse.

5.4 Simple Features

Next, results are shown for the artificial neural networks dealing with the simple
features. The size of the hidden layer is the only variable parameter here. After
testing all networks with a number of 3, 5, 10 and 15 hidden neurons, differences
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Table 3. Resulting confusion matrices for the network dealing with the simple features.
The results are averaged over all possible robot type permutations

Evaluation data Positive Negative

Correct decision 96.7% 100%

False decision 3.3% 0.0%

Unknown robot type Positive

Correct decision 94.6%

False decision 5.4%

Table 4. Resulting overall confusion matrices for one parameter set and one robot
type combination

Evaluation data Positive Negative

Correct decision 96.0% 100%

False decision 4.0% 0.0%

Unknown robot type Positive

Correct decision 100%

False decision 0.0%

seems to be marginal, so we finally choose 3 neurons for this layer. Whereas
computing time can be disregarded here, the fewer neurons should increase the
ability to generalize the learned things. Table 3 again presents the resulting
value.

5.5 Overall Classification Results

Finally we want to present an overall result. The parameters are chosen identi-
cally to the above ones. The network is trained with the following robot types:
AIS/BIT-Robots, Osaka University Trackies, Attempto Tübingen, Clockwork
Orange Delft and Mostly Harmless Graz (and the usual negative examples).
As you can see in Table 4, the unknown robot type (The Ulm Sparrows)
is classified perfectly. The worst values are for the AIS/BIT-Robots where the
network classifies 88% correctly and Tuebingen, where 9% of the robots are not
recognized.

5.6 Computing Time

The vision system currently used in The Ulm Sparrows provides 30 frames
per second. Although it is not necessary to detect the robots in each single frame,
a fast processing is an absolute prerequisite to be able to use the method in real
tournaments. As absolute timing values should always been taken with a grain
of salt, they may nevertheless give an impression on how fast the method can be.
The values are measured on a 2.6GHz Pentium4 Processor, the image sizes are
640×480 Pixels. The various image preprocessing steps, like color indexing, mask
building, observance of the upper size limit etc. need around 5ms, processing the
orientation histogram averages 10ms and the final classification and arbitration
step approximately 2ms. Note that some of the preprocessing steps like the color
indexing need to be done anyway in the vision system for attention control of a
lot of other objects.
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6 Conclusions and Future Work

The presented results indicate a very good overall performance of our approach
considering all the problematic circumstances mentioned above. We showed that
splitting the problem into several subtasks (i.e. simple color based preprocessing
in combination with neural network classification) made the problem manage-
able. The method appears to be a good basis for further improvements.

Even though the images are taken during real tournaments, there are always
surprises in real robotics. So additional, more specific features, or enhancements
like temporal integration may further help to stabilize the overall detection rate
(e.g. occluded robots can be tracked even if the robot is not observable or de-
tected in every single image).
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ating Mobile Robots and by the MirrorBot project, EU FET-IST program grant
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Abstract. A descriptor is presented for characterizing local image
patches in a scale invariant manner. The descriptor is biologically-
plausible in that the necessary computations are simple and local. Two
different methods for robot visual homing based on this descriptor are
also presented and tested. The first method utilizes the common tech-
nique of corresponding descriptors between images. The second method
determines a home vector more directly by finding the stationary local
image patch most similar between the two images. We find that the first
method exceeds the performance of Franz et. al’s warping method. No
statistically significant difference was found between the second method
and the warping method.

1 Introduction

Visual homing is the act of returning to a place by comparing the image currently
viewed with an image taken when at the goal (the snapshot image). While this
ability is certainly of interest for mobile robotics, it also appears to be a crucial
component in the behavioural repertoire of insects such as bees and ants [1].
We present here two methods for visual homing which employ a novel image
descriptor that characterizes a small patch of an image such that the descriptor is
invariant to scale changes. Scale change is a prevalent source of image distortion
in visual homing where viewed landmarks generally appear larger or smaller
than in the snapshot image. The image descriptor developed here has a simple
structure which might plausibly be implemented in the limited hardware of the
insect brain.

Approaches to visual homing range from those purely interested in robotic
implementation (e.g. [2]) to those concerned with fidelity to biological hom-
ing (e.g. [3]). Both camps have proposed methods which find correspondences
between image features and use these to compute a home vector. These feature-
based methods rely on visual features such as regions in 1-D (one-dimensional)
images [4, 5], edges in 1-D images [3], image windows around distinctive points
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in 1-D images [2], coloured regions in 2-D images [6], and Harris corners in 2-D
images [7, 8]. Any visual feature is subject to distortions in scale, illumination,
and perspective, as well as distortions from occlusion. The ability to correspond
features in the presence of these distortions is critical for feature-based homing.
Scale invariant schemes do exist. Notable examples include Lowe’s scale invari-
ant keypoints [9], and a visual homing method using scale invariant features
based on the Fourier-Mellin transform [10]. However, it is currently unclear how
complex these schemes might be for implementation in the neural hardware of
an insect. The descriptor presented here is partially invariant to scale changes
and has a direct and simple neural implementation.

The first of our two homing methods operates in a manner quite similar to
that described above in that it searches for correspondences between descriptors
in the snapshot image and descriptors in the currently viewed image. However,
the second method takes advantage of the structure of the motion field for pure
translation to avoid this search process. This method only pairs descriptors at
the same image position. Very similar pairs ideally correspond to one of two
stationary points in the motion field, known as the focus of contraction and
focus of expansion. Finding either of these foci is equivalent to solving the visual
homing problem.

An alternate approach to visual homing is Franz et. al’s warping method
[11]. This method warps 1-D images of the environment according to parameters
specifying displacement of the agent. The parameters of the warp generating the
image most similar to the snapshot image specify an approximate home vector.
As the warping method is known for its excellent performance (see reports in
[12, 13]) we use it here for comparison with our methods.

The images used in this paper are panoramic and were taken from a robot
equipped with a panoramic imaging system. The results we present were obtained
on a database of images collected within an office environment. We compare the
performance of our two methods with the warping method on these images. Note
that we make the assumption that all images were captured at the same compass
orientation. A robot homing by one of our methods would require a compass to
allow the differing orientation of images to be corrected. The warping method
does not share this requirement. However, it has been found that the warping
method performs better when it can be assumed that all images are taken from
the same orientation [14].

In the next section we define a model of image scaling which is employed in the
subsequent section on the development of our scale invariant image descriptor.
We then present the two homing methods based on this descriptor. Next is
a results section which shows the performance of these two homing methods
and the warping method on a database of panoramic images. This is followed
by a discussion section. The main content of the chapter ends with concluding
remarks and references. An appendix includes a derivation of one of the principles
underlying the image descriptor.
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2 Scaling Model

We define a model of image scaling applicable to a local image patch. Let p
be the coordinates of the centre of an image patch. The effect of scaling is to
change the distance of image features to p by a factor k. Features nearby to
p will shift by a smaller amount then distant features, yet the same scaling
factor of k is applied for all image features. Hence, we refer to this as linear
scaling.

Assume we have an image I which has been subject to linear scaling about
point p by factor k. A point a in the original image I now corresponds to a point
a′ in the scaled image I ′. That is, a pixel in the original image at a will have
the same value as a pixel in the scaled image at a′.

I(a) = I ′(a′) (1)

Note that I(a) is shorthand for the value of the pixel in image I with coordi-
nates (ax, ay). Also, for simplicity we ignore pixel discretization and treat a as
real-valued.

We now formulate an expression for a which involves the centre of scaling
p. The following parametric equation of a line represents a with respect to its
distance l from p, and with respect to the direction from p to a indicated by
the unit vector v.

a = p + lv (2)

v =
a − p

||a − p|| (3)

The point a′ corresponding to a after linear scaling is similarly represented.

a′ = p + klv (4)

Note that this scaling model assumes the scaling factor k to be constant
across the whole image. This is generally not true for the panoramic images
employed here. However, linear scaling is a reasonable model for the scaling that
occurs within local image patches of a panoramic image.

3 The Scale Invariant Descriptor

In this section we develop a local image descriptor which is partially invariant to
scale changes. Figure 1 shows an image I and two increasingly scaled variants I ′

and I ′′. The figure also plots the value of each image along the ray p+ lv where
l > 0 and v is arbitrarily set on a diagonal. We refer to this ray as a channel.
The house image consist only of edges so the plots show isolated pulses where
the channel crosses an edge.

It can be observed that while the positions of edge pulses along the channel
have changed between I and I ′, the same two pulses are still found. Hence, the
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Fig. 1. Scaling of an image I and the value of I along a channel. Three images are
shown with scale doubling incrementally from left to right. Beneath each image is a
plot of the image values along the indicated channel. The images consist only of edges
with darker edges having a higher value than lighter edges

area underneath these two pulses is the same. This observation prompts our first
proposal for an invariant measure, which is the sum of image values along the
channel

fp,v,I =
∫ lmax

0

I(p + lv) dl (5)

If indeed the same pulses are found along the same channel of I and I ′ then the
following is true

fp,v,I′
= fp,v,I (6)

However, if the scaling factor k is too large then this condition will not hold.
For example, in image I ′′ of figure 1 the outside edge of the house has been
scaled entirely out of the frame. The channel now shows only a single pulse.
Thus, fp,v,I �= fp,v,I′′

. The same problem occurs for contraction (k < 1). If I ′′

was the original image and had been scaled down to I, the pulse representing
the outside of the house would have appeared—and again fp,v,I �= fp,v,I′′

. To
mitigate the problem of appearance/disappearance of image features we propose
a new invariant measure which includes a decay function

gp,v,I =
∫ lmax

0

w(l)I(p + lv) dl (7)

The purpose of the decay function w() is to reduce the impact of outlying features
on g. The appendix includes a derivation which places some constraints on w().
One obvious function which satisfies these constraints is

w(l) =
1
lζ

(8)

where ζ < 1.
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The objective now is to determine the relationship between gp,v,I and gp,v,I′
.

This relationship is explored in the appendix and found to be as follows:

gp,v,I′ ≈ kw(k)gp,v,I (9)

The presence of the factor kw(k) implies that g is not scale invariant. We will
deal with this problem momentarily. More fundamentally, however, is the fact
that a scalar quantity such as gp,v,I is likely insufficient to describe a local
image patch robustly. A richer descriptor is required to allow image patches to
be disambiguated. We obtain such a descriptor by forming a vector g of g values
computed from the same point p but at different directions

gp,I =

⎛
⎜⎜⎜⎝

gp,v0,I

gp,v1,I

...
gp,vn,I

⎞
⎟⎟⎟⎠ (10)

The length of the vector g is n. An obvious choice for the channel direction
vectors vi is to arrange them evenly in a radial pattern. For example, if n = 4
we would choose left, up, right, and down. If n = 8 we would add the four
diagonals as well.

For the first algorithm presented below we will not be concerned with the
length of g, but only its direction. Therefore we define a normalized vector h

hp,I =
gp,I

||gp,I || (11)

By normalizing we remove the factor kw(k), hence

hp,I′ ≈ hp,I (12)

and we can say that h is a scale invariant image descriptor. For the second
algorithm it will be necessary to know whether k is greater or less than one.
Thus, in the description for this algorithm we will also make reference to g.

3.1 Conditions

The image descriptor h is invariant to scale changes given the following qualita-
tive conditions:

1. The scale factor k is neither too great nor too small. The decay function can
offset the impact of edge pulses being scaled in and out of range, but the
scaling of outlying edge pulses will still generally distort the direction of h.

2. If image edges are particularly dense then the edge pulses along a channel
may interfere with each other in the summation of equation (7). Thus, it is
advantageous for image edges to be relatively sparse.
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Fig. 2. Structure to compute g. This descriptor has n = 4 and lmax = 5. The grid on
the far left represents the input image. Large spheres indicate elements of the descriptor
which sum their weighted inputs. Small spheres show connections to the input image.
The radii of the small spheres are proportional to weights given by the decay function
in equation (8)

3.2 Structure

The computation of g involves only the weighted summation of input image
values. Figure 2 illustrates the structure that would be required to compute g.

This structure is repeated across all image positions that we wish to charac-
terize. Such repetition of structure is similar to the retinotopic arrangement of
columns of neurons in the visual systems of insects such as the honeybee [15, 16]
and vertebrates such as cats [17]. Further, the computation for g consists only of
local weighted sums. This style of processing is characteristic of artificial neural
networks and is generally believed to be within the space of the processing oper-
ations that biological neural networks are capable of. Thus, while our image de-
scriptor is not a model of any known neural structure in the animal kingdom, it is
at least plausible that this descriptor could be implemented in an animal’s brain.

4 1:N Matching Method

We present here the first of two homing methods which use the image descrip-
tor developed above. This method is based on matching each descriptor in the
snapshot image to N descriptors in the current image at neighbouring image
positions. The coordinates of the best matches are then used to generate cor-
respondence vectors. These correspondence vectors are then mapped to home
vectors using the method described in [14]. The average home vector is the final
output from this method.

We refer to the positions of descriptors in the snapshot image S as source
positions. Each source position is matched with descriptors in the current image
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C at N candidate positions. These candidate positions are located in a block
surrounding the source position.

For each source position p in S we search to find the candidate position p′ in
C which is at the centre of the image patch most similar to the image patch at
p. To judge the degree of match between these two image patches we compute
the scale invariant descriptors hp,S and hp′,C and find the dot product between
them:

DP(p,p′) = hp,S · hp′,C (13)

A high value of DP indicates a good match.
To reduce computational complexity we do not consider all positions in S

as source positions, but only a sampling of positions at integer multiples of the
horizontal step size mx and the vertical step size my, where mx and my are
also integers. Given images of width w pixels and height h pixels we define the
number of horizontal and vertical sampling points

nx = �w/mx (14)
ny = �h/my (15)

The total number of source positions is nxny. Each source position requires a
search for the best candidate position. This search involves computing DP for
N candidate positions. The candidate positions are located within a radius of q
pixels from the source position p. Hence, N = (2q + 1)2.

We select p̌ as the candidate position with the highest DP:

p̌ = arg max
p′∈Eq(p)

DP(p,p′) (16)

Eq([px, py]) = {(px + i, py + j) | i, j ∈ Z, |i| ≤ q ∧ |j| ≤ q} (17)

There is an additional constraint made on the correspondence search whereby
source positions in the snapshot image will only be paired with candidate posi-
tions which are on the same side of the horizon. The horizon of the panoramic
image is the line which does not undergo vertical translations under movements
of the robot in the plane. As long as the robot moves purely within a single
plane, no image features should cross the horizon. Therefore we constrain our
search to avoid any such spurious matches.

The candidate position p̌ with the highest DP is used to compute the corre-
spondence vector δ

δ =
(

δx

δy

)
=

(
Δx(p̌x − px)
Δy(p̌y − py)

)
(18)

where Δx represents the inter-pixel angle in the horizontal direction and Δy

represents vertical inter-pixel angle. These multipliers are required so that δ is
expressed as a pair of angles.

We now have a set of correspondence vectors which ideally describe the move-
ment of image features in S to their new positions in C. From each of these
correspondence vectors we can determine an individual home vector. We use the
‘vector mapping’ method presented in [14] for this purpose. Finally, the aver-
age of these home vectors is computed, normalized, and used as the final home
vector.
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5 1:1 Pairing Method

We now present our second homing method based on the scale invariant image
descriptor. While the method above repeatedly searches for correspondences
between source positions in S and candidate positions in C, the method below
considers only one candidate position for each source position. Only positions
at the same image position are compared and the best matching pair is used to
compute a final home vector directly.

In general, a landmark seen in the snapshot image will either move to a new
position in the current image, or will disappear. However, there is an important
exception to this rule. Landmarks at the focus of contraction (FOC) or focus of
expansion (FOE) will maintain the same image position if the displacement of the
agent from the goal consists of pure translation. For pure non-zero translation the
flow field (field of correspondence vectors) exhibits two foci separated by 180◦.
We assume here that the world is imaged onto the unit sphere, hence both foci
are always visible. All correspondence vectors are parallel to great circles passing
through the foci. Correspondence vectors are oriented from the FOE to the focus
of contraction FOC 1. Figure 3 shows an ideal flow field for an agent within a
simulated environment where all surfaces are equidistant from the agent. It can
be observed that the amplitude of flow (the length of correspondence vectors)
approaches zero at the foci.

Fig. 3. An ideal flow field for pure translation. Vectors were generated by tracking
the displacement of unique markers on the surface of a sphere, where the sphere was
centred on the agent for the snapshot image and then shifted to the right for the current
image

The 1:1 method computes descriptors g and h for positions along the horizon
of the snapshot image S and the current image C. Descriptors at the same image
position in both images are then compared by computing the dot product between
them. The coordinates p̂ of the pairing with the highest DP value is determined

p̂ = arg max
p

DP(p,p) (19)

If our descriptor truly provides a unique means of characterizing local image
patches then p̂ represents a local image patch that is stationary between the

1 See [18] for a more thorough discussion.
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snapshot image and current image. Such an image patch could either represent
a very distant landmark, or else it could represent one of the foci. Here we assume
the latter. In the experiments described below the range of distances to objects
remains rather small. However, if distant landmarks were present then some sort
of filtering scheme might be employed to remove them from the image [19].

We determine which of the two foci p̂ corresponds to by comparing the length
of the vector gp̂,S with gp̂,C . Growth of the descriptor vector g from the snapshot
to the current image occurs in the neighbourhood of the FOC. By definition,
image features move in towards the FOC, and as they do, become weighted
more heavily by the decay function w(). The opposite situation occurs at the
FOE where features become weighted less heavily as they expand away from the
FOE. The quantity b equals 1 for the case of contraction and -1 for expansion

b =

⎧⎨
⎩

1 if ||gp̂,S || < ||gp̂,C ||
−1 if ||gp̂,S || > ||gp̂,C ||

0 otherwise
(20)

Finally, the computed home vector is given by converting the image coordinate
p̂ into a vector and using b to reverse that vector if appropriate

w = b

(
cos(Δxp̂x)
sin(Δyp̂y)

)
(21)

The vector w above is the final estimated home vector.

6 Results

6.1 Image Database

A database of images was collected in the robotics laboratory of the Computer
Engineering Group of Bielefeld University. Images were collected by a camera
mounted on the robot and pointed upwards at a hyperbolic mirror2. The room
was unmodified except to clear the floor. The capture grid had dimensions 2.7
m by 4.8 m, which covered nearly all of the floor’s free space. Further details on
the collection and format of these images has been reported in [14].

The images used for homing are low-resolution (206× 46) panoramic images.
Figure 4 shows sample images along a line from position (6,4) to position (0,4).

6.2 Methods

Both homing methods require edges to be extracted from input images. A Sobel
filter is applied for this purpose. Parameters described below control the level of
low-pass filtering applied prior to the Sobel filter.

Some parameters of the homing methods are method-specific while others
are shared by both methods. The method-specific parameters were set to values

2 The camera was an ImagingSource DFK 4303. The robot was an ActivMedia Pioneer
3-DX. The mirror was a large wide-view hyperbolic mirror from Accowle Ltd.
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(a) (6,4)

(b) (5,4)

(c) (4,4)

(d) (3,4)

(e) (2,4)

(f) (1,4)

(g) (0,4)

Fig. 4. Sample images from image database along a line of positions from (6,4) to (0,4)
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which generally appeared to provide good results. For the 1:N matching method
these included the search radius q (set to 30), the horizontal step size mx (4), and
the vertical step size my (4). Another parameter excluded points in the specified
number of image rows at the top and bottom of the image from being used as
source points. This parameter (set to 10) was introduced upon observing that
image patches in the top and bottom portions of the image tended to be relatively
indistinct. For the 1:1 pairing method the only method-specific parameter is the
height of the window around the horizon (9).

One important shared parameter is the exponent of the decay function, ζ.
This parameter was set to 0.75 which appeared to work well for both methods.
For the remaining shared parameters a search was carried out to find the best
settings for each homing method. This search scored parameter combinations
according to the average angular error over 20 snapshot positions, as described
below. Four parameters were varied in this search process:

– The length of descriptor vectors, n, was set to either 8 or 32 for the 1:N
matching method and 8, 32, or 64 for the 1:1 pairing method.

– The length of channels to sum over, lmax, was set to either 20 or 50.
– Prior to edge extraction, the input images are smoothed by a Gaussian op-

erator 3. The number of applications of this operator was set to either 0 or
4.

– As described in section 3.1, it is not advantageous for image edges to be
excessively dense. The density of edges can be reduced by passing the image
through a power filter, which raises each pixel’s value to exponent τ . τ was
set to either 1, 2, or 4.

The best found shared parameters for the 1:N matching method were: n = 32,
lmax = 50, 0 Gaussian operations, and τ = 4. The best shared parameters for
the 1:1 pairing method were: n = 64, lmax = 50, 4 Gaussian operations, and
τ = 4.

Franz et. al’s warping method was also tested for comparison [11]. Parameters
for this method were found using a parameter search similar to that described
above. Further details can be found in [14].

Before continuing, it is interesting to examine some of the internal workings
of our two homing methods. We begin by examining the correspondence vectors
generated by the 1:N matching method. Figure 5 shows these vectors as com-
puted for the images shown in figure 4 with the goal position at (6,4). The flow
fields generally appear correct (compare with figure 3 which shows the ideal flow
for the same movement—albeit within a different environment). However, there
are a number of clearly incorrect vectors embedded within these flow fields.

For the 1:1 pairing method we look at the variation in DP (p,p). This quan-
tity should show peaks at the FOC and FOE. Figure 6 shows DP (p,p) for the

3 The Gaussian operator convolves the image by the kernel

[0.005 0.061 0.242 0.383 0.242 0.061 0.005]

applied separately in the x and y directions.
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(a) (5,4)

(b) (4,4)

(c) (3,4)

(d) (2,4)

(e) (1,4)

(f) (0,4)

Fig. 5. Correspondence vectors for the 1:N matching method. The snapshot image was
captured at (6,4), which is to the right of the positions indicated above. Hence, the
correct FOC should be around (52,23) while the correct FOE should be near (155,23)
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(a) (5,4)

(b) (4,4)

(c) (3,4)

(d) (2,4)

(e) (1,4)

(f) (0,4)

Fig. 6. Variation in DP (p,p) for the 1:1 pairing method. Snapshot position and labels
are as in figure 5



A Scale Invariant Local Image Descriptor for Visual Homing 375

images shown in figure 4 with the goal again at (6,4). Indeed, two major peaks
near the ideal locations of the FOC and FOE are found.

In the first set of experiments, a single image is selected from the capture grid
as the snapshot image. The method in question then computes home vectors for
all other images. Figure 7 shows the home vectors generated by our two methods
and the warping method for snapshot positions (6,4) and (0,16).

Both the 1:N matching method and the warping method perform quite well
at position (6,4). It is evident for both of these methods that the home vec-
tors for all positions would tend to lead the robot to the goal from all start
positions, although the paths taken by the warping method would be somewhat
shorter. For the 1:1 matching method, however, there are a number of incorrect
vectors embedded within the otherwise correct vector field. At position (0,16)
it is apparent that the 1:N matching methods yields the best results of the
three methods. The 1:1 pairing method exhibits appropriate home vectors for
some positions, but also generates vectors which are directed 180◦ away from
the correct direction, as well as others which point in a variety of incorrect di-
rections. The warping method generates appropriate vectors only within a small
neighbourhood around the goal position.

For a more qualitative determination of the success of homing we compute
the average angular error (AAE) which is the average angular deviation of the
computed home vector from the true home vector. We indicate the average angu-
lar error for snapshot position (x, y) as AAE(x,y). Values for AAE are shown in
the captions for figure 7. These values generally reflect the qualitative discussion
above.

It is clear from figure 7 that homing performance is dependent on the chosen
snapshot position. To assess this dependence we tested all homing methods on a
sampling of 20 snapshot positions and computed AAE for each position. Figure
8 shows these snapshot positions which were chosen to evenly sample the capture
grid. Figure 9 shows the computed AAE for all methods over these 20 snapshot
positions. All methods exhibit higher error for snapshot positions near the fringes
of the capture grid. The captions in this figure show the angular error averaged
over all test positions, and all snapshot positions.

To obtain a more quantitative understanding of the difference between these
methods we performed statistical tests on AAE∗. A repeated measures ANOVA
with Tukey-Kramer multiple comparisons test was carried out between all three
methods. Table 1 presents the results of this test. The test indicates that the 1:N
matching method exhibits a significantly lower error than the warping method.
No significant difference was found between the error of 1:N matching and 1:1
pairing. Nor was a significant difference found between the error of 1:1 pairing
and the warping method.

While it is interesting to compare the performance of these homing methods
against each other, it is useful also to compare them to an absolute standard. As
described in [11], a homing method with an angular error that is always less than
π/2 will yield homing paths that converge to the goal—perhaps taking a very
inefficient route, but arriving eventually. Having an average error below π/2 does
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(a) 1:N Matching: AAE(6,4) =
0.256

(b) 1:N Matching: AAE(0,16) =
0.488

(c) 1:1 Pairing: AAE(6,4) = 0.368 (d) 1:1 Pairing: AAE(0,16) = 0.888

(e) Warping: AAE(6,4) = 0.114 (f) Warping: AAE(0,16) = 1.793

Fig. 7. Home vector fields for 1:N matching (a,b), 1:1 pairing (c,d), and warping (e,f),
for snapshot positions (6,4) (a,c,e) and (0,16) (b,d,f)
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Fig. 8. Positions of images and snapshots within the capture grid

(a) 1:N Matching:
AAE∗ = 0.305

(b) 1:1 Pairing:AAE∗ = 0.517

(c) Warping:AAE∗ = 0.550

Fig. 9. AAE for the twenty snapshot positions shown in figure 8 for all methods on
image collection original

not imply convergent homing but it is a useful threshold. We have performed a
statistical analysis of the difference between the angular error and π/2 using the
Wilcoxon rank sum test. Table 2 presents the results of this test for π/2, and
also for increasingly small angles π/4, π/6, and π/8. The test indicates whether
each method exhibits an AAE smaller than the threshold. All three methods
exhibit error significantly less than both π/2 and π/4. However, only the 1:N
matching method exhibits an error significantly less than π/6.
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Table 1. Statistical significance of the difference in AAE∗ between homing methods.
Significance for each cell is indicated if the method on the vertical axis is significantly
better than the method on the horizontal axis. Empty fields indicate no significant
difference. Legend: * = (p < 0.05), ** = (p < 0.01), *** = (p < 0.001), **** =
(p < 0.0001), X = self-match. Test: Repeated measures ANOVA with Tukey-Kramer
multiple comparisons

1:N Matching 1:1 Pairing Warping

1:N Matching X *

1:1 Pairing X

Warping X

Table 2. Statistical significance of AAE∗ being less than the reference angles π/2,
π/4, π/6, and π/8. Significance for each cell is indicated if the method on the vertical
axis has an angular error significantly less than the threshold on the horizontal axis.
See table 1 for legend. Test: Wilcoxon rank sum test

π/2 π/4 π/6 π/8

1:N Matching **** **** **

1:1 Pairing **** ***

Warping **** *

7 Discussion

Of the three homing methods tested above, the 1:N matching method exhibits the
lowest error and overall best results. According to our statistical tests the 1:1 pair-
ing method performs equivalently to the warping method. The pairing method is
of interest because it does not require repeated searching to find correspondences
between images. In theory, the computational complexity of the 1:1 pairingmethod
should be considerably lower than the 1:N matching method. However, the pair-
ing method appears to be less robust to parameter settings and requires the most
expensive parameters (high n, and lmax) in order to perform well.

8 Conclusions

This chapter introduced a new descriptor for local image patches which is partially
invariant to scale changes. The descriptor has a simple structure that is suitable for
neural implementation. Two homing methods based on this descriptor were pre-
sented. The first method employed the standard technique of matching descriptors
between images. The second method, however, employed the novel notion of ex-
tracting one of the foci of motion, and using the position of that focus to compute
the home vector directly. The performance of the 1:N matching method was found
to exceed that of the warping method. No statistically significant difference was
found between the 1:1 pairing method and the warping method. Future work will
look at improvements to our descriptor as well as possibilities for using other scale
invariant descriptors for the 1:1 pairing method.
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Appendix

The goal of this appendix is to determine the relationship of gp,v,I′
to gp,v,I .

We begin with gp,v,I′

gp,v,I′
=

∫ lmax

0

w(l)I ′(p + lv) dl (22)

From equations (1), (2), and (4) we obtain

I(p + lv) = I ′(p + klv) (23)

With a change of variables we have the following:

I(p +
l

k
v) = I ′(p + lv) (24)

We insert the above into the right hand side of equation (22) to obtain

gp,v,I′
=

∫ lmax

0

w(l)I(p +
l

k
v) dl (25)

Next we replace the integration variable l with j = l
k

gp,v,I′
=

∫ lmax/k

0

w(jk)I(p + jv)k dj (26)

Now we place our first assumption on w(). We assume this function has the
property

w(xy) = w(x)w(y) (27)

Utilizing this property on expression (26) and renaming the integration variable
j back to l gives

gp,v,I′
= kw(k)

∫ lmax/k

0

w(l)I(p + lv) dl (28)

To proceed further we must place another constraint on w(). The intention of
this decay function is to reduce the impact of outlying features on g. Therefore it
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makes sense that w(l) should be small for large values of l. We first define a new
constant l∗max = min(lmax, lmax/k). The second constraint on w() is as follows:

w(l) ≈ 0 for l > l∗max (29)

Therefore

gp,v,I ≈
∫ l∗max

0

w(l)I(p + lv) dl (30)

and

gp,v,I′ ≈ kw(k)
∫ l∗max

0

w(l)I(p + lv) dl (31)

Combining these two approximations gives us the desired relationship

gp,v,I′ ≈ kw(k)gp,v,I (32)
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Gallese, Vittorio 19, 162
Gerstner, Wulfram 245
Gini, Giuseppina 281, 299

Hafner, Verena V. 225
Hermann, Gilles 333

Jasso, Hector 211

Kaplan, Frédéric 225
Kaufmann, Ulrich 118, 349
Knoblauch, Andreas 31, 107, 118
Kraetzschmar, Gerhard 349

Lee, Mark H. 315

Markert, Heiner 107, 118
Mayer, Gerd 349
Ménard, Olivier 144
Meng, Qinggang 315
Merke, Artur 235
Murray, John C. 73

Oppacher, Franz 362

Palm, Günther 1, 107, 118, 349
Panchev, Christo 88, 182
Pulvermüller, Friedemann 31, 162

Riedmiller, Martin 235
Rougier, Nicolas P. 54

Scarfogliero, Umberto 299
Sheynikhovich, Denis 245
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